
Phoenix

CTRE

Jan 03, 2024

Contents

1 Blog Entries 3

2 Follow these instructions in order! 5
2.1 Phoenix Software Reference Manual . 5
2.2 Primer: CTRE CAN Devices . 5
2.3 Primer: What is Phoenix v5 Software . 6
2.4 Do I need to install any of this? . 9
2.5 Prepare your workstation computer . 10
2.6 FRC: VS Code C++/Java . 23
2.7 FRC: Prepare NI roboRIO . 38
2.8 Prepare Linux Robot Controller . 50
2.9 Initial Hardware Testing . 60
2.10 Bring Up: CAN Bus . 61
2.11 Bring Up: CANivore . 73
2.12 Bring Up: PCM . 82
2.13 Bring Up: PDP . 84
2.14 Bring Up: Pigeon IMU . 86
2.15 Bring Up: Pigeon 2.0 . 92
2.16 Bring Up: CANifier . 94
2.17 Bring Up: CANCoder . 96
2.18 Bring Up: CANdle . 102
2.19 Bring Up: Talon FX/SRX and Victor SPX . 103
2.20 Bring Up: Talon FX/SRX Sensors . 128
2.21 Bring Up: Remote Sensors . 152
2.22 Bring Up: Differential Sensors . 157
2.23 WPI/NI Software Integration . 158
2.24 Simulation . 160
2.25 Motor Controller Closed Loop . 162
2.26 Faults . 188
2.27 Common Device API . 190
2.28 Support . 195
2.29 Troubleshooting and Frequently Asked Questions 196
2.30 Errata . 202
2.31 Software Release Notes . 209
2.32 Additional Resources . 209

i

ii

Phoenix

Below is the latest documentation for CTR-Electronics Phoenix software framework. This
includes…
• Class library for supported Phoenix devices for programming in C++, Java (FRC), Lab-
VIEW (FRC), or C# (HERO).

• Phoenix Tuner Graphical Interface - provides configuration options, diagnostics, con-
trol and plotting.

• Phoenix Diagnostic Server - install on to roboRIO for Tuner, and to perform HTTP API
requests for diagnostic information.

1

Phoenix

2

1
Blog Entries

Blog entries for 2022 and on will be posted at: CTR-Electronics Blog.

3

https://store.ctr-electronics.com/blog

Phoenix

4 Chapter 1. Blog Entries

2
Follow these instructions in order!

2.1 Phoenix Software Reference Manual

This is the latest documentation for CTR-Electronics Phoenix software framework. This in-
cludes:
1) Class library for supported Phoenix devices for programming in C++, Java (FRC), Lab-
VIEW (FRC), or C# (HERO).

2) Phoenix Tuner GUI - provides configuration options, diagnostics, control and plotting.
3) Phoenix Diagnostic Server - install on to RIO for Tuner, and to performHTTP API requests
for diagnostic information.

4) Supplemental CLI commands for roboRIO-Linux.
Be sure to follow the following instructions in order to ensure success in developing your
robot platform.

2.2 Primer: CTRE CAN Devices

CTR-Electronics has designed many of the available CAN bus devices for FRC-style robotics.
This includes:
• Motor Controllers such as Talon FX, Talon SRX, and Victor SPX
• Orientation devices such as Pigeon IMU and Pigeon 2.0
• Sensors such as CANcoder and CANifier
• Full list of Phoenix devices
• Pneumatics Control Mode (PCM)
• Power Distribution Panel (PDP)

These devices have similar functional requirements, specifically every device of a given model
group requires a unique device ID for typical FRC use (settings, control and status). The
device ID is usually expressed as a number between ‘0’ and ‘62’, allowing use for up to 63
Talon SRXs, 63 Victors, 63 PDPs, etc. at once. This range does not intersect with device IDs
of other CAN device types. For example, there is no harm in having a Pneumatics Control

5

Phoenix

Module (PCM) and a Talon SRX both with device ID ‘0’. However, having two Talon SRXs with
device ID ‘0’ will be problematic.
These devices are field upgradable, and the firmware shipped with your devices will pre-
date the “latest and greatest” tested firmware intended for use with the latest API release.
Firmware update can be done easily using Phoenix Tuner.
The Talon FX/SRX and Victor SPX provide two pairs of twisted CANH (yellow) and CANL
(green) allowing for daisy chaining. Other devices such as the PDP and PCM have Weidmuller
connectors that accept twisted pair cabling. Often you will be able to use your Talons and
Victors to connect together your PCM and PDP to each other.
The CAN termination resistors are built into the FRC robot controller (roboRIO) and in the
Power Distribution Panel (PDP) assuming the PDP’s termination jumper is in the ON position.
More information on wiring and hardware requirements can be found in the user manual of
each device type.

2.3 Primer: What is Phoenix v5 Software

Phoenix is a package that targets LabVIEW, C++, and Java for the FRC Robotics Controller
platform, i.e. the NI roboRIO robot controller.
It includes the Application Programming Interface (API), which are the functions you call to
manipulate Phoenix devices on the CAN bus.

Note: PCM and PDP API are built into the core WPI distribution.

The C++ and Java APIs are very similar, typically only differing on the function name case
(configAllSettings in Java versus ConfigAllSettings in C++). Because Java is more widely used
in FRC than C++, this document will reference the Java routine names. C++ users should
take note that the leading character of every function is UPPERCASE in C++.
Additionally, Phoenix shared libraries are also targeted for C++ on Linux (amd64, armhf,
aarch64) and typically available on our maven repository. The example support libraries use
socket-can for CANBus access, however custom drivers can be provided by the end user for
alternative CANBus solutions (NVIDIA TX2 native CAN bus for example).
Phoenix also includes a NETMF (C#) class library for the non-FRC HERO Robot Controller.
This can replace the roboRIO in use cases that don’t require the full features of the FRC
control system, and are not in use during competition.

Note: With Phoenix framework, teams can control/leverage Phoenix devices outside of
the roboRIO (e.g. Rasp-Pi or Jetson TX2), and use the roboRIO/DriverStation to safely en-
able/disable the actuators.

Note: Leveraging CTRE CAN devices from third-party CAN hardware was officially made
FRC legal for the 2019 season.

There are tons of examples in all languages at CTRE’s GitHub account:
• https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages

6 Chapter 2. Follow these instructions in order!

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages

Phoenix

• https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW
Entire GitHub organization: https://github.com/CrossTheRoadElec/
Phoenix-Examples-Languages and Phoenix-Examples-LabVIEW are specifically tested on the
FRC RoboRIO control system.
Phoenix-Linux-SocketCAN-Example demonstrates control of Talons from a Raspberry Pi.
https://github.com/CrossTheRoadElec/Phoenix-Linux-SocketCAN-Example

2.3.1 What is Phoenix Tuner?

Phoenix-Tuner v1 is the graphical interface that allows for configuration of Phoenix CAN bus
devices.

Tip: There is a modernized version called Tuner X that is available for Windows and Android
devices (works with Phoenix 5 and Phoenix Pro).

It provides a variety of functionality to support all Phoenix CAN Bus devices. The feature set
includes:
• Update device firmware (including PDP/PCM)
• Change CAN IDs
• Configure direction and offsets

2.3. Primer: What is Phoenix v5 Software 7

https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW
https://github.com/CrossTheRoadElec/
https://github.com/CrossTheRoadElec/Phoenix-Linux-SocketCAN-Example
https://pro.docs.ctr-electronics.com/en/stable/docs/tuner/index.html
https://pro.docs.ctr-electronics.com/en/stable/

Phoenix

• Self-test Snapshot devices
• Change configuration settings
• Factory default configuration settings
• Test motors
• Check plots
• Temperature Calibrate Pigeon-IMU
• Confirm proper CAN bus wiring without writing any software.

Now you can drive your motors and collect data without writing any software.

Configuration values can be checked, modified, and defaulted with the new config view.
Config values can also be imported/exported as an easy-to-follow JSON formatted file.

8 Chapter 2. Follow these instructions in order!

Phoenix

The following sections of documentation will cover how to use Phoenix Tuner and the other
components of Phoenix.

Tip: Have a feature request? Send to us at support@ctr-electronics.com or report it on
GitHub.

2.4 Do I need to install any of this?

Yes, if any of the following:
• You need library support for:

– CANcoder
– CANdle
– CANifier
– CANivore USB-to-CAN Adapter
– Falcon 500 Powered by Talon FX

2.4. Do I need to install any of this? 9

mailto:support@ctr-electronics.com
https://store.ctr-electronics.com/cancoder
https://store.ctr-electronics.com/candle/
https://store.ctr-electronics.com/canifier
https://store.ctr-electronics.com/canivore/
https://store.ctr-electronics.com/falcon-500-powered-by-talon-fx/

Phoenix

– Pigeon IMU
– Pigeon 2.0
– Talon SRX
– Victor SPX

• You need to field upgrade PCM, PDP, or any of the above devices
• You want to use Phoenix Tuner for CAN diagnostics (highly recommended)

Note: PCM and PDP objects are already supported in the base FRC installation. However,
Phoenix Tuner is required for setting the device ID, field-upgrade, and Self-test Snapshot.

2.5 Prepare your workstation computer

2.5.1 Before Installing Phoenix…

It is strongly recommended to complete the base installation of FRC tools.
https://docs.wpilib.org/en/latest/docs/getting-started/getting-started-frc-control-system/
control-system-software.html

Warning: You will need to image the roboRIO to latest software before continuing. See
FRC/NI documentation on how to image the roboRIO.

Test base FRC Installation - FRC LabVIEW

If a team intends to use LabVIEW to develop robot software, be sure to complete the full
NI installer. At which point, opening LabVIEW should reveal the FRC-styled graphical start
menu.
At this point it is recommended to create a simple template project and test deploy to the
roboRIO. Be sure the DriverStation can communicate with the robot controller, and that DS
message log is functional.

Test base FRC Installation - FRC C++ / Java

It is recommended to install the FRC Driver Station Utilities. This will install the Driver
Station software, which is necessary for:
1. Basic comms checks
2. Reading joystick data
3. Generally required for enabling motor actuation (Phoenix Tuner Control features may
require this, depending on setup).

10 Chapter 2. Follow these instructions in order!

https://store.ctr-electronics.com/gadgeteer-pigeon-imu/
https://store.ctr-electronics.com/pigeon-2/
https://store.ctr-electronics.com/talon-srx/
https://store.ctr-electronics.com/victor-spx/
https://store.ctr-electronics.com/pneumatic-control-module/
https://store.ctr-electronics.com/power-distribution-panel/
https://store.ctr-electronics.com/pneumatic-control-module/
https://store.ctr-electronics.com/power-distribution-panel/
https://docs.wpilib.org/en/latest/docs/getting-started/getting-started-frc-control-system/control-system-software.html
https://docs.wpilib.org/en/latest/docs/getting-started/getting-started-frc-control-system/control-system-software.html
https://docs.wpilib.org/en/stable/docs/zero-to-robot/step-3/imaging-your-roborio.html?highlight=imaging-your-roborio

Phoenix

General Recommendations for FRC C++ / Java.

The FRC C++/Java standard distribution for 2020 is based on the Microsoft Visual Studio
Code development environment with WPI extensions.
If you are not familiar with developing C++/Java FRC programs, we strongly recommend
testing full deployment to your robot controller before installing Phoenix and porting previous
season software. A recommended test is to:
1. Create a project from scratch
2. Make a simple change such as add a print statement with a counter.
3. Deploy (or debug) your application.
4. Confirm robot can be teleop-enabled in DS.
5. Open FRC message Console and read through all the messages.
6. Repeat 2 - 5 ten times. This will train students to become familiar with and build general
confidence in the tools.

Note: Third-party vendor libraries are installed into the C++/Java project, not the environ-
ment. For each C++/Java project you create, you must use the WPI provided tools to select
Phoenix to bring the libraries into your project.

2.5.2 What to Download (and why)

Option 1: Windows installer (strongly recommended)

Environments: Windows-LabVIEW, Windows-C++/Java, HERO C#
Phoenix Installer zip can be downloaded at: https://store.ctr-electronics.com/software/.
It is typically named Phoenix Framework_Windows_vW.X.Y.Z.zip
This will install:
• The LabVIEW Phoenix API (if LabVIEW is detected and selected in installer)
• The C++/Java Phoenix API (if selected in installer)
• Device Firmware Files (that were tested with the release)
• CTRE Support of RobotBuilder
• Phoenix Tuner

– Installs Phoenix API libraries into the roboRIO (required for LabVIEW)
– Installs Phoenix Diagnostics Server into the RoboRIO (needed for CAN diagnostics).
– Plotter/Control features
– Self-test Snapshot
– Device ID and field-upgrade

2.5. Prepare your workstation computer 11

https://store.ctr-electronics.com/software/

Phoenix

Warning: If using Microsoft Edge, the browser may flag the download for
security reasons. In the menu bar of the downloaded file, select “Keep”.

If the browser asks, confirm the download is trustworthy.

12 Chapter 2. Follow these instructions in order!

Phoenix

Option 2: Phoenix API via Non-Windows Zip

Environments: Linux/MacOS - C++/Java
The Phoenix API can be manually installed on non-Windows platforms by downloading the
“non-Windows” zip and following the instructions found inside.
This essentially contains a maven-style repository that holds the API binaries and headers, as
well as a “vendordeps” JSON file that instructs VS how to incorporate the Phoenix C++/Java
API libraries.

Note: This is auto installed when using the Windows full installer (Option 1).

Phoenix Tuner

Environments: Windows
If you are using option 2, you will need to download Phoenix Tuner separately. Phoenix Tuner
is available here… https://github.com/CrossTheRoadElec/Phoenix-Tuner-Release/releases
This can be convenient for workstations that aren’t used for software development, but are
used for field-upgrade or testing motor controllers.

Note: LabVIEW teams may need to use Phoenix Tuner to install Phoenix libraries into the
roboRIO. More information on this can be found under Prepare Robot Controller.

Note: This is auto installed when using the Windows full installer.

Note: Developers may be interested to know that all Phoenix Tuner features leverage an
HTTP API provided by the Phoenix Diagnostics Server. As such, custom tooling can be devel-
oped to field-upgrade, test-control, or diagnostics CTRE devices without Tuner.

Device Firmware Files (crf)

The test firmware files for all CTRE devices are packaged with the Windows Installer (and has
been for years). However, many FRC teams don’t notice, or prefer to download them directly
from the product pages on the ctr-electronics.com website. If Internet access is available,
they can be downloaded as such.
The FRC Software installer will create a directory with various firmware files/tools for many
control system components. Typically, the path is:

C:\Users\Public\Documents\FRC

2.5. Prepare your workstation computer 13

https://github.com/CrossTheRoadElec/Phoenix-Tuner-Release/releases

Phoenix

When the path is entered into a browser, the browser may fix-up the path:

C:\Users\Public\Public Documents\FRC

In this directory are the initial release firmware CRF files for all CTRE CAN bus devices,
including the new Talon FX and CANCoder.
The latest firmware to be used can be found in the Software Release Notes.

Note: Additionally, newer updates may be provided online at https://store.ctr-electronics.
com/software/.

Note: There is no longer FRC versus non-FRC firmware for motor controllers. Instead the
latest firmware detects if the use case is FRC. If so, the device will FRC-Lock, and will require
the Driver Station for actuation.

14 Chapter 2. Follow these instructions in order!

https://store.ctr-electronics.com/software/
https://store.ctr-electronics.com/software/

Phoenix

2.5.3 Workstation Installation

There are two installation methods listed below. The simplest and recommended approach is
to run the Windows Installer (Option 1).

Option 1: Windows Offline Installer (C++/Java/LabVIEW, HERO C#)

Un-compress the downloaded zip.

Double click on the installer. If the Windows protection popup appears press More Info, then
Run anyway.

2.5. Prepare your workstation computer 15

Phoenix

16 Chapter 2. Follow these instructions in order!

Phoenix

This will look very similar to previous installers - make sure you have the relevant component
selected for your programming language.

2.5. Prepare your workstation computer 17

Phoenix

LV Teams: Make sure LabVIEW is selected. If it is grayed out, then LabVIEWwas not installed
on the PC.
C++/Java Teams: Make sure C++/Java is selected.
If Visual Studio 2017 (Community/Professional) is detected, HERO C# will be selected. This
can be turned off to speed up the installer.

18 Chapter 2. Follow these instructions in order!

Phoenix

Installer can take anywhere from 30 seconds to 5 minutes depending on which Microsoft
runtimes need to be installed.

Final page will look like this. The Phoenix Tuner link can be used to open Phoenix Tuner.
Alternatively, you can use the Windows Start Menu.

2.5. Prepare your workstation computer 19

Phoenix

Option 2: Non-Windows Zip (C++/Java)

The zip will contain two folders, “maven” and “vendordeps”. These folders are meant to
be inserted into your frc2020 install folder.
See WPI documentation for typical location. https://docs.wpilib.org/en/latest/docs/software/
wpilib-overview/3rd-party-libraries.html#the-mechanism-c-java
Copy/paste the maven and vendordeps folder into frc2020 folder. This will override a
pre-existing Phoenix installation if present.

Note: This will not install Phoenix Tuner or firmware files. If these are necessary (and they
typically are) these can be downloaded separately or consider using the complete Phoenix
Installer.

20 Chapter 2. Follow these instructions in order!

https://docs.wpilib.org/en/latest/docs/software/wpilib-overview/3rd-party-libraries.html#the-mechanism-c-java
https://docs.wpilib.org/en/latest/docs/software/wpilib-overview/3rd-party-libraries.html#the-mechanism-c-java

Phoenix

2.5.4 Post Installation Steps

After all workstation installs, the following checks should be followed to confirm proper in-
stallation.

FRC C++/Java - Verify Installation

The offline files for vscode are typically installed in:

C:\Users\Public\wpilib\2020\vendordeps\Phoenix.json (File used by vscode to include␣
↪→Phoenix in your project)
C:\Users\Public\wpilib\2020\maven\com\ctre\phoenix (multiple maven-style library␣
↪→files)

Your drive letter may be different than “C:”. After running the Phoenix Installer, the instruc-
tions to add or update Phoenix in your robot project must be followed.

FRC LabVIEW – Verify Installation

After running the installer, open a pristine copy of FRC LabVIEW.
Testing the install can be done by opening LabVIEW and confirming the VIs are installed. This
can be done by opening an existing project or creating a new project, or opening a single VI
in LabVIEW. Whatever the simplest method to getting to the LabVIEW palette.
The CTRE Palette is located in:
• WPI Robotics Library -> Third Party.

This palette can also be found in:
• WPI Robotics Library -> RobotDrive -> MotorControl -> CanMotor
• WPI Robotics Library -> Sensors -> Third Party
• WPI Robotics Library -> Actuators -> Third Party

Warning: LabVIEW teams not using latest Phoenix may need to chain Phoenix Open VIs
together. See the errata here: LabVIEW Phoenix Open VIs must be chained to guarantee
sequential execution

2.5. Prepare your workstation computer 21

Phoenix

FRC Windows – Open Phoenix Tuner

Open Phoenix Tuner

If this is the first time opening application, confirm the following:
• the status bar should read “Lost Comm”.
• No CAN devices will appear.
• The Server version will be unknown.

22 Chapter 2. Follow these instructions in order!

Phoenix

2.6 FRC: VS Code C++/Java

2.6.1 FRC C++/Java – Create a Project

Next we will create a new robot project in vscode and create a Talon SRX. The goal is compile
the project only, so hardware is not needed.
Follow the WPI frc-docs instructions on reaching the create new project. Typically, you can
use CNTRL+SHIFT+P to open the VS text bar, and type create to reach the WPI command.

“Timed Skeleton” is used in this example for sake of simplicity.

2.6. FRC: VS Code C++/Java 23

Phoenix

24 Chapter 2. Follow these instructions in order!

Phoenix

Once the project is created, ensure project builds. Testing robot deploy is also useful if robot
controller is available.

2.6. FRC: VS Code C++/Java 25

Phoenix

2.6.2 FRC C++/Java – Add Phoenix

Right-Click on “build.gradle” in the project tree, then select “Manage Vendor Libraries”.

At the top of your screen, a menu will appear. Select “Install new libraries (offline)”.

26 Chapter 2. Follow these instructions in order!

Phoenix

Tip: Alternatively you can use “Install new libraries (online)” option with https://maven.
ctr-electronics.com/release/com/ctre/phoenix/Phoenix5-frc2023-latest.json. However this is
not recommended as this requires a live Internet connection to use your FRC project.

The menu will now display a list of vendor libraries you can install. Check “CTRE Phoenix”,
then click “OK”

Note: This will bring the library into the project references, however the library will not
be loaded if the source code does not create a Phoenix object or call any Phoenix routines.
Therefore, you must create a Phoenix object to properly test the install.

Tip: Teams can verify Phoenix is in their robot project by checking for the existence of
vendordeps/Phoenix.json in the project directory.

2.6.3 FRC C++ Build Test: Single Talon

Create a TalonSRX object. The number specified is the Talon’s device ID, however for this
test, the device ID is irrelevant.
Be sure to include “ctre/Phoenix.h”, otherwise TalonSRX will not be recognized as a valid
class type.
Add an example call, take your time to ensure to spell it correctly.

2.6. FRC: VS Code C++/Java 27

https://maven.ctr-electronics.com/release/com/ctre/phoenix/Phoenix5-frc2023-latest.json
https://maven.ctr-electronics.com/release/com/ctre/phoenix/Phoenix5-frc2023-latest.json

Phoenix

Intellisense may not be functional at this point in time (note the green underline indicating
VS did not parse the header).

Tip: To correct this - Close all files in the project - Restart VS Code - Wait ~40s - Reopen
source files in VS Code

If you see linker errors, then the desktop simulation checkbox was likely checked.

28 Chapter 2. Follow these instructions in order!

Phoenix

This can be resolved by manually turning off the feature. Set flag to false.

2.6. FRC: VS Code C++/Java 29

Phoenix

Tip: When resolving compiler/linker errors, press the trash icon first to cleanly erase the
previous error lines in the terminal. Or manually scroll the bottom to ensure you are not
looking at stale error lines from previously failed builds.

The only reliable way to confirm build was successful is to confirm the BUILD SUCCESSFUL
line at the bottom of the TERMINAL.

Note: The problems tab may or may not be clear of errors. Our testing with VSCode has
shown that it can report stale or incorrect information while making code changes. Always
use the TERMINAL output to determine the health of your compilation and build system.

30 Chapter 2. Follow these instructions in order!

Phoenix

In the event that the intellisense is not resolving symbols (for IDE auto-complete features),
restart VSCode.

After restart, routines should be found correctly.

2.6. FRC: VS Code C++/Java 31

Phoenix

Tip: Headers can be auto-opened by CNTRL+CLICK the include line.

Depending on the version of VS Code used, youmay encounter an IntelliSense warning. These
can be ignored.

32 Chapter 2. Follow these instructions in order!

Phoenix

2.6.4 FRC Java Build Test: Single Talon

Create a TalonSRX object. The number specified is the Talon’s device ID, however for this
test, the device ID is irrelevant.
Typically, you can type “TalonSRX” and watch the intellisense auto pop up. If you press
ENTER to select the entry, the IDE may auto insert the import line for you.

Add an example call, take your time to ensure to spell it correctly. Use the intellisense features
if available.
Here is the final result.

2.6. FRC: VS Code C++/Java 33

Phoenix

If you see build errors, carefully find the first erroneous line in the TERMINAL output. Typi-
cally, you can CNTRL + click the error line and auto-navigate to the source.

34 Chapter 2. Follow these instructions in order!

Phoenix

When resolving compiler errors, press the trash icon first to cleanly erase the previous error
lines in the terminal. Or manually scroll the bottom to ensure you are not looking at stale
error lines from previously failed builds.

The only reliable way to confirm build was successful is to confirm the BUILD SUCCESSFUL
line at the bottom of the TERMINAL.

Note: The problems tab may or may not be clear of errors. Our testing with VSCode has
shown that it can report stale or incorrect information while making code changes. Always
use the TERMINAL output to determine the health of your compilation and build system.

2.6. FRC: VS Code C++/Java 35

Phoenix

2.6.5 FRC C++/Java - Updating Phoenix

If you already have a previous version of Phoenix installed and you want to update to a newer
version, follow these steps. Install the latest version of Phoenix on your PC. Basically, rerun
the latest installer (same as section above).
Open your robot program in VS Code.

36 Chapter 2. Follow these instructions in order!

Phoenix

At the top of your screen, a menu will appear. Select “Check for updates (offline)”.

Tip: Alternatively you can use “Check for updates (online)”. However this is not recom-
mended as this requires a live Internet connection to use your FRC project.

2.6. FRC: VS Code C++/Java 37

Phoenix

The menu will now display a list of vendor libraries you can update. Check “CTRE Phoenix”,
then click “OK”

2.6.6 FRC C++/Java – Test Deploy

Create a Talon SRX (or Pigeon, CANifier, Victor SPX) and attempt to “deploy”. Adding a print
statement also helps to confirm you are actually deploying the software displayed in VsCode.
Confirm that the software deployed using DriverStation. DS may report firmware-too-old /
not-retrieved errors since the hardware has not been setup yet.

2.7 FRC: Prepare NI roboRIO

2.7.1 Why prepare Robot Controller?

In the previous 2019 season, preparing the Robot Controller typically meant:
1. Installing the Phoenix Diagnostics
2. Installing the Phoenix API into roboRIO (if using LabVIEW).

In the 2020 release of Phoenix, both of these are automatically handled by the li-
brary deployment features of WPI Visual Studio Code extensions (C++/Java) and NI
LabVIEW.
Phoenix Diagnostics has become a library that is compiled into the FRC robot application.
This is a result of the roboRIO CAN bus changes implemented by the NI for 2020. Tuner now
communicates with “Phoenix Diagnostic Server” running in the deployed application via an
HTTP API.
If the roboRIO does not have a deployed application, a temporary Diagnostic Server applica-
tion can be deployed from Tuner. This is particularly useful during hardware-bringup.

38 Chapter 2. Follow these instructions in order!

Phoenix

LabVIEW

In the past few seasons, we have relied on a NI LabVIEW feature that would automatically de-
ploy the Phoenix API libraries to the roboRIO. However, we have found circumstances where
the NI feature potentially corrupts our libraries during install.
So we have opted to deploy our binaries directly from Phoenix Tuner to ensure proper
installation.
As a result starting in 2022, LabVIEW users must install Phoenix API libraries into their ro-
boRIO (after roboRIO is imaged). Afterwards deploy your LabVIEW application as you would
normally.

Tip: Remember to specify the Team Number or Address of the roboRIO under Diagnostic
Server Address. We recommend using the USB cable and selecting “172.22.11.2” to avoid
networking issues.

2.7. FRC: Prepare NI roboRIO 39

Phoenix

2.7.2 How to prepare Robot Controller

Open Tuner and connect USB between the workstation and the roboRIO.

Select 172.22.11.2 # RoboRIO Over USB and 1250 for the address and port. These are
generally selected by default, and typically do not require modification.
Deploy the Temporary Diagnostic Server.

Note: This is unnecessary if a robot application has been deployed already (C++, Java, or
LabVIEW).

40 Chapter 2. Follow these instructions in order!

Phoenix

2.7.3 Verify the robot controller - Tuner

After application deployment, Tuner will immediately connect to the roboRIO.
Confirm the bottom status bar is green and healthy, and server version is present.

2.7. FRC: Prepare NI roboRIO 41

Phoenix

If there are CAN device present, they will appear. However, it is possible that devices are
missing, this will be resolved in the next major section (CAN Bus bring up).

42 Chapter 2. Follow these instructions in order!

Phoenix

roboRIO Connection (Wi-Fi/Ethernet)

The recommended connection method for control/plotter features is over USB or using
static IP (Ethernet/Wi-Fi). The mDNS strategy used by the roboRIO can sometimes fail
intermittently which can cause hiccups when submitting HTTP requests to the roboRIO.
Testing has shown that using USB (172.22.11.2) or using static IP address has yielded a
greater user experience than the roborio-team-frc.local host name has.

Note: Future releases may have improvements to circumvent the limitations of mDNS.

2.7.4 Verify the robot controller - LabVIEW

Create a pristine LabVIEW application. Add a CTRE device to Begin.Vi. For example, create
a Talon SRX object, even if the device is not physically present.

Warning: LabVIEW teams not using latest Phoenix may need to chain Phoenix Open VIs
together. See the errata here: LabVIEW Phoenix Open VIs must be chained to guarantee
sequential execution

Tip: Drag drop the following into your Begin.vi

2.7. FRC: Prepare NI roboRIO 43

Phoenix

Connect DS and turn on Warnings and Prints by selecting the bottom most option.

Upload the application to the robot controller and check the driver station message log.
If everything is working, the Phoenix Initialization message can be found.

Note: This message will not appear after subsequent “soft” deploy (LabVIEW RAM-only
temporary deploys).

If Phoenix API has not been installed into the robot controller, this message will appear.

44 Chapter 2. Follow these instructions in order!

Phoenix

If you have used Phoenix LifeBoat (which should NOT be used), this message will appear. If
this occurs you will need to re-image your roboRIO and then re-follow the instructions in this
section exactly, without using LifeBoat.

2.7.5 Verify the robot controller - Web page

The Silverlight web interface provided in previous seasons is no longer available. Moving
forward, the NI web interface will likely be much simpler.
As a result, Phoenix Tuner may embed a small message reminder indicating that CAN
features have been moved to Tuner. This will depend on the version of Phoenix.
Typically, the message will disappear after 5 seconds. This will not interfere with normal web
page features (IP Config, etc.).

2.7. FRC: Prepare NI roboRIO 45

Phoenix

Warning: The roboRIO Web-page does not provide CAN bus support any more as this
has been removed by NI. Use Phoenix Tuner instead.

Warning: The roboRIO Web-page does not render correctly if using Internet Explorer
(see below). Recommended browsers are Chrome or Firefox.

46 Chapter 2. Follow these instructions in order!

Phoenix

2.7.6 Verify the robot controller - HTTP API

Tuner leverages the HTTP API provided by Phoenix Diagnostics Server.
So technically you have already confirmed this is working.
But, it is worth noting that this HTTP API can potentially be used by third-party software, or
even the robot application itself.
Here is a simple get version command and response.

http://172.22.11.2:1250/?action=getversion

2.7. FRC: Prepare NI roboRIO 47

Phoenix

Here is a simple getdevices command and response.

http://172.22.11.2:1250/?action=getdevices

48 Chapter 2. Follow these instructions in order!

Phoenix

2.7. FRC: Prepare NI roboRIO 49

Phoenix

2.8 Prepare Linux Robot Controller

2.8.1 Why prepare Linux Robot Controller?

Preparing a Linux robot controller allows CAN Device control without a roboRIO for non-FRC
use or as a secondary processor that can also directly control CAN Devices while still using
the roboRIO for Enable/Disable Signal.
Phoenix Diagnostic Server is necessary for Phoenix Tuner to interact with CTRE CANDevices.
Tuner communicates with “Phoenix Diagnostic Server”, a Linux application that provides an
HTTP API.

2.8.2 Supported Linux Controllers

Below are the currently supported Linux hardware platforms. An additional SocketCAN de-
vice is necessary to utilize the provided software as-is, otherwise a custom platform library
is required.
• NVIDIA Jetson TX2
• NVIDIA Jetson Nano
• Raspberry Pi 3
• Raspberry Pi 4

It is possible to use other hardware platforms, however hardware and software setup may be
different than this documentation.

Note: CTRE now supports using the CANivore as a SocketCAN device with Phoenix CAN
FD devices on supported Linux platforms.

Note: CTRE currently recommends the CANable for use as a generic CAN 2.0 SocketCAN
device. More information can be found here: https://canable.io/

2.8.3 How to prepare Hardware?

Jetson TX2

Follow the documentation provided by NVIDIA to setup the Jetson TX2: https://developer.
nvidia.com/embedded/downloads

50 Chapter 2. Follow these instructions in order!

https://canable.io/
https://developer.nvidia.com/embedded/downloads
https://developer.nvidia.com/embedded/downloads

Phoenix

Raspberry Pi/Jetson Nano

Image your device with the respective image below. Other Images can also be used, although
these images have been tested and are known to be supported.
Raspbian Buster Image for Raspberry Pi: Pi Image
Jetson Nano Developer Kit SD Card Image: Nano Image
Etcher (available here) is the recommended tool for flashing the image to an SD card. With
Etcher open, select your downloaded image and the SD card target, then click “Flash!”.
Once flashed insert the SD card into your device, set up a user and connect to aWi-Fi network.

CANable (SocketCAN Device)

Once your controller is ready, it is necessary to setup your SocketCAN device.
To use CANable as a SocketCAN device, update the Canable firmware to “candlelight” using
these instructions.
Alternatively you can deploy SocketCAN firmware to a HERO. See our repository on Github.

2.8.4 How to prepare Robot Controller Software?

It is recommended to update your Linux platform software before installing the components
necessary for Phoenix.
• sudo apt-get update

• sudo apt-get upgrade

Next, install the required software packages using the following commands:
• CAN Tools sudo apt-get install can-utils

• Git sudo apt-get install git

• cmake (for build support) sudo apt-get install cmake

• libsdl2 (for gamepad support) sudo apt-get install libsdl2-dev

With the necessary software installed, clone the example repository into the user directory.
This example is a basic C++ project that includes all necessary Phoenix libraries and will be
used to validate the hardware and software setup.
From the user directory, run: git clone https://github.com/CrossTheRoadElec/
Phoenix-Linux-SocketCAN-Example.git

Then navigate into the repo directory: cd ./Phoenix-Linux-SocketCAN-Example/.

To ensure the scripts from our cloned repository can be executed, make sure to enable exe-
cution privileges.
• chmod +x build.sh

• chmod +x clean.sh

• chmod +x canableStart.sh

2.8. Prepare Linux Robot Controller 51

https://downloads.raspberrypi.org/raspbian/images/raspbian-2019-07-12/2019-07-10-raspbian-buster.zip
https://developer.nvidia.com/jetson-nano-sd-card-image-r322
https://www.balena.io/etcher/
https://canable.io/updater/
https://canable.io/updater/
https://github.com/CrossTheRoadElec/HERO-STM32F4

Phoenix

Now we can initialize our SocketCAN interface. Bring up the interface as socket “can0” by
running the CANable start script: ./canableStart.sh

Note: if you see the message Device or resource busy it means the CAN network is
already up and requires no further action.

Configure SocketCAN to allow hot swapping

This is necessary to be able to disconnect and reconnect your USB to CAN adapter without
running bringing up the CAN network each time your usb to can adapter is reconnected.
Open a new terminal and type cd /etc/network/.. Once inside the network directory type
sudo gedit interfaces.

On Raspberry PI type sudo geany interfaces to edit the file.

A text editor should open. Add the following lines to the file:

allow-hotplug can0
iface can0 can static
bitrate 1000000
txqueuelen 1000
up /sbin/ip link set $IFACE down
up /sbin/ip link set $IFACE up type can

2.8.5 How to validate SocketCAN functionality?

Make sure you have at least one CTRE CAN device connected for validation of the CAN net-
work. With no CAN traffic, device LEDs will be blinking RED.
Use the ifconfig command to list network interfaces, where you can see the status of the
CAN socket. The interfaces list should contain an entry for “can0” and should look like this:

Type cansend can0 999#DEADBEEF to send a test CAN frame. Your CAN devices should now
blink orange since a valid CAN message has been seen.
Use candump can0 to see all incoming CAN traffic, which should display all periodic informa-
tion being sent by a CAN Device. You should see a constant stream of messages similar to
this:

52 Chapter 2. Follow these instructions in order!

Phoenix

2.8.6 Running the SocketCan Example

Build the example with ./build.sh.
Then run the example with ./bin/example.
You’re now running Phoenix on your Linux device. Confirm there are no error messages being
sent to console output.

Note: You may see error messages if your CAN devices are not yet configured and firmware
updated. Follow the Bring Up: CAN section to setup your CAN devices.

Warning: If your CTRE CAN devices were previously used with a roboRIO it is likely they
are FRC locked and will not enable without a roboRIO on the CAN bus. See Confirm FRC
Unlock for instructions to confirm FRC unlock.

You can stop your Program with Ctrl+C.

2.8.7 Modifying the SocketCan Example

To modify the example Open the file explorer and navigate to the Phoenix-Linux-SocketCAN-
Example folder.

The example is a simple program, so all of the code is contained within example.cpp. Edit
this file to modify the program.

2.8. Prepare Linux Robot Controller 53

Phoenix

After modifying the file click the Save button in the top right corner then Go back to Running
the SocketCAN Example to run your modified example.

54 Chapter 2. Follow these instructions in order!

Phoenix

2.8. Prepare Linux Robot Controller 55

Phoenix

2.8.8 How to setup Phoenix Tuner?

With the CAN network up and running, Phoenix Tuner can be used with the Linux Robot
Controller in the same manner as the roboRIO.

Note: SSH must be enabled on the Linux Robot Controller to perform a field upgrade or
modify a device’s configuration using Phoenix Tuner.

Connect both the Linux Robot Controller and Windows machine to the same network via WiFi
or an ethernet connection.
Enter the IP Address or Name of the Linux Robot Controller into Phoenix tuner.

Tip: To find the IP address in Linux, run the ifconfig command to display network in-
terfaces. The IP address will be listed under a ‘lan’ or ‘wlan’ entry and listed as inet.

56 Chapter 2. Follow these instructions in order!

Phoenix

Setting up the Phoenix Diagnostics Server

The Phoenix Diagnostics Server is an HTTP server that communicates with the Phoenix Tuner.
There are two versions of the server: a standalone version installed through Phoenix Tuner
(legacy), and a version built into your user program (latest). Only one version of the diagnos-
tics server may be running at any given time. We recommend you run the diagnostics server
through your user program.
You can disable the diagnostics server in your program by adding
c_SetPhoenixDiagnosticsStartTime(-1); to the start of your main method. The line
is commented out in the example program.

Warning: The instructions below are available for legacy support. We recommend you
instead run the Phoenix Diagnostics Server in your user program.

Warning: The legacy instructions below currently do not work. See: https://github.com/
CrossTheRoadElec/Phoenix-Linux-SocketCAN-Example/issues/15

To install the standalone diagnostics server:
Press the Install button.

Enter your username and password when prompted.

Note: The user must have sudo permissions to successfully install.

2.8. Prepare Linux Robot Controller 57

https://github.com/CrossTheRoadElec/Phoenix-Linux-SocketCAN-Example/issues/15
https://github.com/CrossTheRoadElec/Phoenix-Linux-SocketCAN-Example/issues/15

Phoenix

Note: To find your username look at the text before the @ in the terminal. For example, in
this terminal the user is ctre.

Tuner will then install and start the diagnostics server on the device.
The diagnostics server is now installed and running on your device.

58 Chapter 2. Follow these instructions in order!

Phoenix

2.8.9 Verify the robot controller - Tuner

After installation is complete, Tuner will immediately connect to your device.
Confirm the bottom status bar is green and healthy, and server version is present. If this is
not the case and you are using the standalone server (legacy), you may need to re-start the
Diagnostic Server by using the “Force Stop Server” and “Force Start Server” buttons.

If there are CAN device present they will appear in the “CAN Devices” tab. However, it is
possible that devices will appear to be missing - this will be resolved in “Bring Up: CAN Bus”.

2.8. Prepare Linux Robot Controller 59

Phoenix

2.9 Initial Hardware Testing

For your competition team to have the best chance of success, hardware components should
be tested as soon as they are received. This is generally done by:
• Powering up the device and confirming LED states.
• Ensuring hardware shows up in Tuner if wired to CAN Bus.
• Drive outputs / drive motor in both directions (if motor controller).

This is explained in the sections below, but it is worth pointing out how important this step is.
It is in your team’s best interest to test ALL purchased robot components immediately and in
isolation. Here are the reasons why:
• Robot replacement components should be in a state of readiness. Otherwise a replace-
ment during competition can yield erroneous behavior.

• Many robot components (in general) have fixed warranty periods, and replacements
must be done within them.

• Confirming devices are functional before handing them to students ensures best
chance of success. If a student later damages hardware, they need to understand how
they did it to ensure it does not happen again. Without initial validation, you can’t de-
termine root-cause.

Much of this is done during the “bring-up” phase of the robot. However, there is much vali-
dation a team can do long before the robot takes form.
Unfortunately, there are many teams that do not perform this step, and end up isolating
devices and re-implementing their cable solutions at competition, because this was not done

60 Chapter 2. Follow these instructions in order!

Phoenix

during robot bring up.

Note: “Bring up / Board bring up / Hardware bring up” is an engineering colloquial phrase.
It is the initial setup and validation phase of your bench or robot setup.

2.10 Bring Up: CAN Bus

Now that all of the software is installed and verified, the next major step is to setup hardware
and firmware.

2.10.1 Understand the goal

At this point we want to have reliable communication with CAN devices. There are typically
two failure modes that must be resolved:
• There are same-model devices on the bus with the same device ID (devices have a default
device ID of ‘0’).

• CAN bus is not wired correctly / robustly.
This is why during hardware validation, you will likely have to isolate each device to assign a
unique device ID.

Note: CTRE software has the ability to resolve device ID conflicts without device isolation,
and CAN bus is capable of reporting the health of the CAN bus (see Driver Station lightening
tab). However, the problem is when both root-causes are occurring at the same time, this
can confuse students who have no experience with CAN bus systems.

Note: Many teams will preassign and update devices (Talon SRXs for example) long before
the robot takes form. This is also a great task for new students who need to start learning
the control system (with the appropriate mentor oversight to ensure hardware does not get
damaged).

Note: Label the devices appropriately so there is no guessing which device ID is what. Don’t
have a label maker? Use tape and/or Sharpie (sharpie marks can be removed with alcohol).

Warning: Talon SRX and Talon FX must use unique device IDs for Phoenix API to function
correctly. This design decision was made so that teams could use the existing TalonSRX
class for control.

2.10. Bring Up: CAN Bus 61

Phoenix

2.10.2 Check your wiring

Specific wiring instructions can be found in the user manual of each product, but there are
common steps that must be followed for all devices:
• If connectors are used for CANBus, tug-test each individual crimped wire one at a
time. Bad crimps/connection points are the most common cause of intermittent connec-
tion issues.

• Confirm red and black are not flipped. Motor Controllers typically are not reverse
power protected.

• Confirm battery voltage is adequate (through Driver Station or through voltmeter).
• Manually inspect and confirm that green-connects-to-green and yellow-connects-to-
yellow at every connection point. Flipping/mixing green and yellow is a common
failure point during hardware bring up.

• Confirm breakers are installed in the PDP where appropriate.
• Measure resistance between CANH and CANL when system is not powered (should mea-
sure ~60Ω). If the measurement is 120Ω, then confirm both RIO and PDP are in circuit,
and PDP jumper is in the correct location.

2.10.3 Power up and check LEDs

If you haven’t already, power up the platform (robot, bench setup, etc.) and confirm LEDs are
illuminated (at all) on all devices.
You may find many of them are blinking or “blipping” red (no communication).

Tip: If you are color-blind or unable to determine color-state, grab another team member to
assist you.

Note: If using Ribbon cabled Pigeon IMUs, Pigeon LEDs will reflect the ribbon cable, not
the CAN bus. At which point any comm issue with Pigeon will be resolved under section Bring
Up: Pigeon IMU.

2.10.4 Open Phoenix Tuner

Navigate to the CAN devices page.
This capture is taken with no devices connected to the roboRIO. roboRIO will take around 30
seconds to boot.

62 Chapter 2. Follow these instructions in order!

Phoenix

Tip: There is a modernized version called Tuner X that is available for Windows and Android
devices (works with Phoenix 5 and Phoenix Pro).

2.10.5 LEDs are red – now what?

We need to rule out same-id versus bad-bus-wiring. There are two approaches. Approach
1 will help troubleshoot bad wiring and common IDs. Approach 2 will only be effective in
troubleshooting common IDs. But this method is noteworthy because it is simple/quick (no
wiring changes, just pull breakers).
The specific instructions for changing device ID are in the next section. Review this if needed.

2.10. Bring Up: CAN Bus 63

https://pro.docs.ctr-electronics.com/en/stable/docs/tuner/index.html
https://pro.docs.ctr-electronics.com/en/stable/

Phoenix

Approach 1 (best)

Procedure:
• Physically connect CAN bus from roboRIO to one device only. Circumvent your
wiring if need be.

• Power boot robot/bench setup.
• Open Phoenix Tuner and wait for connection (roboRIO may take ~30 seconds to boot)
• Open CAN devices tab
• Confirm if CAN device appears.
• Use Tuner to change the device ID
• Label the new ID on the physical device
• Repeat this procedure for every device, one at a time.

If you find a particular device where communication is not possible, scrutinize device’s power
and CAN connection to roboRIO. Make the test setup so simple that the only failure mode
possible is within the device itself.

Note: Typically, there must be two termination resistors at each end of the bus. One is in
the RIO and one is in the PDP. But during bring-up, if you keep your harness short (such as
the CAN pigtail leads from a single Talon) then the internal resistor in the RIO is adequate.

Approach 2 (easier)

Procedure:
• Leave CAN bus wiring as is.
• Pull breakers and PCM fuse from PDP.
• Disconnect CAN bus pigtail from PDP.
• Pick the first device to power up and restore breaker/fuse/pigtail so that only
this CAN device is powered.

• Power boot robot/bench setup.
• Open Phoenix Tuner and wait for connection (roboRIO may take ~30 seconds to boot)
• Open CAN devices tab
• Confirm if CAN device appears. If device does not appear, scrutinize device’s power and
CAN connection to roboRIO.

• Use Tuner to change the device ID
• Label the new ID on the physical device
• Repeat this procedure for every device.

If you find a particular device or section of devices where communication is not possible,
then the CAN bus wiring needs to be re-inspected. Remember to “flick” / “shake” / “jostle”
the CAN wiring in various sections to attempt to reproduce red LED blips. This is a sure sign
of loose contact points.

64 Chapter 2. Follow these instructions in order!

Phoenix

If you are able to detect and change device ID on your devices individually, begin piecing your
CAN bus together. Start with roboRIO <—-> device <—> PDP, to ensure termination exists
at both ends. Then introduce the remaining devices until a failure is observed or until all
devices are in-circuit.
If introducing a new device creates a failure symptom, scrutinize that device by replacing it,
inspecting common wires, and inspecting power.

Note: If 2014 PDP is the only device that does not appear or has red LEDs, see PDP boot up
section for specific failure mode.

Note: If ribbon cable Pigeon does not appear, it likely is because Talon has old firmware.

At the end of this section, all devices should appear (notwithstanding the above notes) and
device LEDs should not be red. PCM, Talon, Victor, Pigeon, and CANifier typically blink
orange when they are healthy and not controlled. PDP may be orange or green depending on
its sticky faults.

2.10.6 Set Device IDs

Note: A CTRE device can have an ID from 0 to 62. If you select an invalid ID, you will
generally get an immediate prompt.

Below we see several devices, however the physical robot has 19 actual devices. Because
all the Talons have a device ID of ‘0’, the do not show up as unique hardware. This must be
resolved before you can attempt utilizing them.

Note: We recommend isolating each device and assigning a unique ID first. But in the event
there is a conflict, expect an entry mentioning multiple devices. When selecting a device, the
actually physical device selected will be the conflict-id device that booted last. You can use
this information to control which Talon you are resolving by power cycling the conflict device,
then changing its ID in Tuner.

Select the device and use the numeric entry to change the ID. Note the text will change blue
when you do this. Then press “Change ID” to apply the changes.

2.10. Bring Up: CAN Bus 65

Phoenix

If operation completes, an OK will appear in the bottom status bar (this is true of all opera-
tions). Also note the ID has updated in the device list, and the ID text is now black again.

66 Chapter 2. Follow these instructions in order!

Phoenix

Tip: All production CTRE hardware ships with a default ID of ‘0’. As a result, it is useful to
start your devices at device ID ‘1‘, so you can cleanly add another out-of-box device without
introducing a conflict.

When complete, make sure every device is visible in the view. Use the Blink button on each
device to confirm the ID matches the expected physical device.

Note: The device count is present in the top left corner of the device list. Use this to quickly
confirm all devices are present.

Note: If ribbon-cabled pigeon is not present, then the host talon likely has old firmware.

2.10. Bring Up: CAN Bus 67

Phoenix

2.10.7 Field upgrade devices

At this point all devices are present, but the firmware is likely old.
The 2020 season has 20.X firmware for Talon FX, Talon SRX, Victor SPX, CANCoder, CANifier,
and Pigeon IMU. Moving forward, the first number of the version will represent the season
(next year’s 2021 firmware will be 21.X).
20.X firmware is required for all motor controllers and CANCoder. 20.X is also recommended
for CANifier and Pigeon IMU.

Note: Latest PDP is 1.40. PDP typically ship with 1.30. 1.40 has all of the signals read by the
WPILib software, and will tare the current measures so current will read 0 instead of ~1-2
amps when there is no current-draw. Updating to 1.40 is recommended.

Note: Latest PCM is 1.65. PCM typically ship with 1.62. Firmware 1.65 has an improvement
where hardware-revision 1.6 PCMs will not-interrupt compressor when blacklisting a shorted
solenoid channel. Older revisions will pause the compressor in order to safely sticky-fault,

68 Chapter 2. Follow these instructions in order!

Phoenix

new revisions have no need to do this (if firmware is up to date).

Select the CRF under the Field-upgrade section then press Update Device. The CRFs are
available in multiple places, and likely are already on your PC. See section Device Firmware
Files (crf).

2.10. Bring Up: CAN Bus 69

Phoenix

If there are multiple devices of same type (multiple Talon SRXs for example), you may check
Update all devices. This will automatically iterate through all the devices of the same type,
and update them. If a device field-upgrade fails, then the operation will complete. Confirm
Firmware Version column in the device list after field-upgrade.

Note: Each device takes approximately 15 seconds to field-upgrade.

When complete every device should have latest firmware.

2.10.8 Pick device names (optional)

The device name can also be changed for certain device types: - CANifier - Pigeon IMU (on
CAN bus only) - Talon SRX and Victor SPX

Note: PDP and PCM do not support this.

Note: Ribbon cabled Pigeon IMUs do not support this.

Note: To re-default the custom name, clear the “Name” text entry so it is blank and press
“Save”.

2.10.9 Self-test Snapshot

At this point every device should be present on the bus, and updated to latest. This is an
opportune time to test the Self-test Snapshot feature of each device.
Select each device either in the device list, or using the dropdown at the center-top. This
dropdown is convenient as it is accessible regardless of how the tabs are docked with Tuner.

Note: If you press the “Selected CAN device” text next to dropdown, you will be taken back
to the CAN Devices tab.

70 Chapter 2. Follow these instructions in order!

Phoenix

Navigate to the Self-test Snapshot tab. If Self-test Snapshot tab is not present, use the Win-
dows menu bar to reopen it.

Press Self-test Snapshot button and confirm the results.

2.10. Bring Up: CAN Bus 71

Phoenix

Note: This Pigeon has not had its firmware updated, this is reported at the top.

You can also use the Blink/Clear faults button to blink the selected device and clear any pre-
viously logged sticky faults.

72 Chapter 2. Follow these instructions in order!

Phoenix

2.10.10 Driver Station Versions Page

It is worth mentioning there is basic support of reporting the CAN devices and their versions
in the diagnostics tab of the Driver Station.
If there is a mixed collection of firmware versions for a given product type, the version will
report “Inconsistent”.

Note: The recommended method for confirming firmware versions is to use Phoenix Tuner.

Note: There is a known issue where ribbon-cabled Pigeons may erroneously report as a
Talon. Since this is not a critical feature of the Driver Station, this should not be problematic
for FRC teams.

2.11 Bring Up: CANivore

2.11.1 Supported systems

Currently, the following systems are supported for CANivore development:
• roboRIO
• Windows (x86-64)
• Linux desktop (x86-64)
• Raspberry Pi (ARM 32-bit and 64-bit)
• NVIDIA Jetson

Note: Custom bit rates and CAN 2.0 are not supported at this time. The parameters
passed into SocketCAN are not applied by the firmware.

2.11. Bring Up: CANivore 73

Phoenix

2.11.2 Non-FRC Linux Kernel Module

On non-FRC Linux systems, the canivore-usb kernel module must be installed to add Sock-
etCAN support for the CANivore. The kernel module is distributed through APT. Our deb
package repository must be added to your APT sources list prior to the initial installation:

sudo curl -s --compressed -o /usr/share/keyrings/ctr-pubkey.gpg "https://deb.ctr-
↪→electronics.com/ctr-pubkey.gpg"
sudo curl -s --compressed -o /etc/apt/sources.list.d/ctr2022.list "https://deb.ctr-
↪→electronics.com/ctr2022.list"

After adding our sources, the kernel module can be installed and updated using the following:

sudo apt update
sudo apt install canivore-usb

Tip: To get a robot application up and running quickly, check out our Phoenix SocketCAN
Example.

2.11.3 View attached CANivores

Open Phoenix Tuner, go to the CANivores tab, and click on the Refresh CANivores button to
get a list of CANivores attached to the target system. You can specify the target system in
the Robot Controller Install tab.

Note: The Phoenix Diagnostic Server must be running on the target system to use the

74 Chapter 2. Follow these instructions in order!

https://github.com/CrossTheRoadElec/Phoenix-Linux-SocketCAN-Example
https://github.com/CrossTheRoadElec/Phoenix-Linux-SocketCAN-Example

Phoenix

CANivores page.

Note: The CANivores tab does not work on non-FRC Linux systems. This will be fixed
in a future update. As a workaround, you can use the caniv CLI to configure your CANivores.

Tip: There is a modernized version called Tuner X that is available for Windows and Android
devices (works with Phoenix 5 and Phoenix Pro).

Tip: If you are connecting to CANivores on your local Windowsmachine, there is a CANivore-
usb option in the Diagnostic Server Address dropdown. This option runs a diagnostic server
within Tuner so you do not need to run a robot project to communicate with CANivores.

2.11.4 Field upgrade CANivores

In the CANivores tab of Phoenix Tuner, select the CANivore you wish to update. Select the
CRF under the Field-upgrade section then press Update Device. The CRFs are available in
multiple places, and likely are already on your PC. See section Device Firmware Files (crf).
If you wish to update all attached CANivores, check Update all CANivores. If a CANivore
field-upgrade fails, then the operation will complete. Confirm Firmware Version column in
the device list after field-upgrade.

2.11. Bring Up: CANivore 75

https://pro.docs.ctr-electronics.com/en/stable/docs/tuner/index.html
https://pro.docs.ctr-electronics.com/en/stable/

Phoenix

2.11.5 Rename CANivores

CANivores can be given custom names for use within a robot program. Select the CANivore
you wish to rename. Under the General CANivore Configuration section, set the new name
and click “Change Name”.

Note: CANivore names cannot be longer than 32 characters.

Note: To re-default the custom name, clear the “Name” text entry so it is blank and press
“Change Name”.

76 Chapter 2. Follow these instructions in order!

Phoenix

2.11.6 Configure CAN bus termination

The CANivore has a 120-ohm programmable resistor for terminating the CAN bus. The re-
sistor can be configured using the CAN Bus Termination Enable and Disable buttons in the
CANivores tab of Phoenix Tuner. The current state of the terminating resistor can be seen in
the “CAN Bus Termination” column of the list of CANivores.

Note: A CAN bus requires two terminating resistors - one at each extreme end. If only one
is present, communication over CAN may fail.

2.11. Bring Up: CANivore 77

Phoenix

2.11.7 Configure ESP32

The CANivore includes an ESP32 module which provides the ability to run custom code,
which in turn allows access to Wi-Fi and Bluetooth features. By default, the ESP32 is
disabled and held in reset. Users can enable the ESP32 via Phoenix Tuner so that it is allowed
to run.
CANivore provides a software USB COM port, which typical ESP32 software tools can use to
deploy and debug.
Examples will be coming soon!
The current state of the ESP32 can be seen in the “ESP32 State” column of the list of CANi-
vores.

Tip: For convenience, the software USB COM port is always available and can be used to
deploy an ESP32 application even if setting is disabled. However ESP will not boot up after
power reset if setting is disabled.

Warning: FRC rules typically require that no device is allowed to emit wireless signals
during an FRC competition. Teams are encouraged to read the latest game rules and
disable ESP32 during competition use if need be.

78 Chapter 2. Follow these instructions in order!

Phoenix

2.11.8 CANivore API

In the constructors for CANivore-compatible CAN devices, there is an optional string param-
eter to set the device’s CAN bus. This string can be the CANivore’s name or serial number.
On non-FRC Linux systems, this string can also be a SocketCAN interface.
If no CAN bus string is passed into the constructor, or the CAN bus string is empty:
• On the roboRIO, the system will use the roboRIO native CAN bus.
• On Windows, the system will use the first CANivore found. (Requires Phoenix 5.22+)
• On non-FRC Linux systems, the system will use SocketCAN interface can0.

Note: If there are multiple CANivores with the same name, the system will use the first
CANivore found.

Note: You can explicitly specify that a device should use the roboRIO native CAN bus by
passing down “rio” or “roborio”.

TalonFX fx_default = new TalonFX(0); // This constructs a TalonFX on the RIO native␣
↪→CAN bus
TalonFX fx_rio = new TalonFX(1, "rio"); // This constructs a TalonFX on the RIO␣
↪→native CAN bus
TalonFX fx_drivebase = new TalonFX(0, "Drivebase"); // This constructs a TalonFX on␣
↪→the CANivore bus named "Drivebase"

(continues on next page)

2.11. Bring Up: CANivore 79

Phoenix

(continued from previous page)
CANCoder cc_elevator = new CANCoder(0, "Elevator"); // This constructs a CANCoder on␣
↪→the CANivore bus named "Elevator"

2.11.9 CANivore Status Prints

When working with CANivore CAN buses in a robot program, Phoenix prints some messages
to report the state of the CANivore connection. These messages can be useful to debug
connection issues (bad USB vs bad CAN) or report bugs to CTR Electronics.

Table 1: Connection Messages
Message Connection Status
CANbus Failed to Connect Could not connect to a CANivore with the given name

or serial number
CANbus Connected Successfully found and connected to the CANivore with

the given name or serial number
CANbus Disconnected Detected that a CANivore USB device has been discon-

nected

Table 2: CANivore Bring-up Messages (Linux only)
Message Bring-up Status
CANbus Failed Bring-up Found and connected to the CANivore, but could not

configure the device or start the network
CANbus Successfully Started Successfully configured the CANivore and started the

network

Table 3: Network State Messages
Message Network State
CANbus Network Down

Linux: The SocketCAN network has been deactivated,
USB-to-CAN activity has stopped
Windows: Could not open the communication
channels for USB-to-CAN traffic

CANbus Network Up

Linux: The SocketCAN network has been activated,
USB-to-CAN activity has resumed
Windows: Successfully opened the communication
channels for USB-to-CAN traffic

80 Chapter 2. Follow these instructions in order!

Phoenix

2.11.10 caniv - CANivore CLI

caniv is a Command-line Interface (CLI) to interact with CANivores outside of Phoenix Tuner.
After running any action on the CANivores page of Phoenix Tuner, Latest caniv is deployed
to the target system.

Note: Unlike the CANivores page in Phoenix Tuner, caniv does not require a running
Phoenix Diagnostic Server.

On Linux systems (including the roboRIO), caniv can be found at /usr/local/bin. On Windows
systems, the program is in the Phoenix Tuner install location, under Binary\windows\ctre.
To view a list of available commands, run caniv either with no parameters or with --help.

2.11. Bring Up: CANivore 81

Phoenix

2.12 Bring Up: PCM

At this point PCM will have firmware 1.62 or 1.65 (latest). Open Phoenix Tuner to confirm.

2.12.1 Phoenix Tuner Self-test Snapshot

Press Self-test Snapshot to confirm solenoid states, compressor state ,and battery/current
measurements. Since device is not enabled, no outputs should assert.

Note: In this view, the Self-test Snapshot was docked to the right. If CAN Devices width is
shrunk small enough, the field-upgrade and Device ID options are hidden and the list view
becomes collapsed. This way you can still use the device list as an alternative to the center-top
dropdown.

The next step is to get the compressor and solenoids operational.
Create a Solenoid object in LabVIEW/C++/Java and set channel 0 to true.

82 Chapter 2. Follow these instructions in order!

Phoenix

import edu.wpi.first.wpilibj.Solenoid;
public class Robot extends TimedRobot {

Solenoid _solenoid = new Solenoid(0, 0); // first number is the PCM ID (usually␣
↪→zero), second number is the solenoid channel

public void teleopPeriodic() {
_solenoid.set(true);

}

Tip: Image below can be dragged/dropped into LabVIEW editor.

Then confirm using the Solenoid LED on the PCM and Self-test Snapshot in Tuner.

Tip: There is a modernized version called Tuner X that is available for Windows and Android
devices (works with Phoenix 5 and Phoenix Pro).

Generally creating a solenoid object is sufficient for the compressor features to function. In
order for the compressor output to activate, all of the following conditions must be met:
• The robot is enabled via the Driver Station
• Robot application has created a solenoid (or compressor object) with the correct PCM

2.12. Bring Up: PCM 83

https://pro.docs.ctr-electronics.com/en/stable/docs/tuner/index.html
https://pro.docs.ctr-electronics.com/en/stable/

Phoenix

device ID.
• PCM must be powered/wired to CAN Bus.
• Pressure-switch reads too-low (can be confirmed in Self-test Snapshot).
• No compressor related faults occur (can be confirmed in Self-test Snapshot)

Tip: Creating a compressor object is not necessary, but can be useful to force the compressor
off despite pressure reading too-low with the setClosedLoopControl routine/VI. This can
be useful for robot power management during critical operations.

import edu.wpi.first.wpilibj.Compressor;
public class Robot extends TimedRobot {

Compressor _compressor = new Compressor();

public void teleopPeriodic() {
_compressor.setClosedLoopControl(false); //This will force the compressor off

}

Tip: Image below can be dragged/dropped into LabVIEW editor.

2.13 Bring Up: PDP

At this point PDP will have firmware 1.40 (latest). Open Phoenix Tuner to confirm.
Use Self-test Snapshot to confirm reasonable values for current and voltage.

84 Chapter 2. Follow these instructions in order!

Phoenix

Tip: There is a modernized version called Tuner X that is available for Windows and Android
devices (works with Phoenix 5 and Phoenix Pro).

2.13. Bring Up: PDP 85

https://pro.docs.ctr-electronics.com/en/stable/docs/tuner/index.html
https://pro.docs.ctr-electronics.com/en/stable/

Phoenix

2.13.1 Getting sensor data

Sensor data can also be retrieved using the base FRC API available in LabVIEW/C++/Java.
See WPI/NI/FRC documentation for how.

2.13.2 DriverStation Logs

Driver Station logs are automatically generated during normal FRC use. This includes current
logging on all PDP Wago channels. Review WPI/NI/FRC documentation for how leverage this.

2.13.3 2015 Kick off Kit PDPs

There is a known issue with 2015 Kickoff-Kit PDPs where the PDP will not appear on CAN bus
and/or LEDs will be red, despite all other devices on the CAN bus functioning properly. This
is due to an ESD vulnerability that only exists in the initial manufacture run in 2014. Every
season PDP afterwards does not have this issue.
Manufacture date of the PDP can be checked in Tuner. Any PDP with a manufacture date of
August 14, 2014may have this issue. No other PDPs (even those with other 2014manufacture
dates) are known to be affected.

These PDPs do correctly provide power and terminate the CAN bus with no compromises.
However, the current measurement features may not be correct or available on this version
of PDP. If such a PDP is re-used or re-purposed, we recommend using it on your practice robot
or for bench setups, and not for competition.

2.14 Bring Up: Pigeon IMU

2.14.1 Power Boot

Power boot the robot and wait for Pigeon IMU LED pattern indicating device has settled. This
will appear as a symmetric blink pattern (equal time on each side’s LED). If the LED strobe is
weighted to one side (more time on one side than the other) then IMU is still settling. Typical
settle time is four seconds.

Warning: Ribbon cabled Pigeon may not appear in CAN devices if Talon SRX firmware is
too old.

86 Chapter 2. Follow these instructions in order!

Phoenix

Warning: Ribbon cabled Pigeonmay not work as a remote sensor unless Pigeon Firmware
is at least 4.13.

2.14.2 Phoenix Tuner

Open Phoenix tuner and use the Self-test Snapshot feature to confirm values. Rotate IMU
and confirm Yaw moves as expected.

Tip: There is a modernized version called Tuner X that is available for Windows and Android

2.14. Bring Up: Pigeon IMU 87

https://github.com/CrossTheRoadElec/Phoenix-Releases/releases/tag/Pigeon_IMU_v4.13
https://pro.docs.ctr-electronics.com/en/stable/docs/tuner/index.html

Phoenix

devices (works with Phoenix 5 and Phoenix Pro).

Note: Moving counter-clockwise is interpreted as a positive change.

2.14.3 Pigeon API

Create a Pigeon IMU object in your robot application and poll the Yaw value.

Warning: In a competition robot application it is strongly recommended to first con-
firm that getState() yields a Ready State. Otherwise the IMU values will not be useful.

import com.ctre.phoenix.sensors.PigeonIMU;
public class Robot extends TimedRobot {

PigeonIMU _pigeon = new PigeonIMU(0);
int _loopCount = 0;

public void teleopPeriodic() {
if(_loopCount++ > 10)
{

_loopCount = 0;
double[] ypr = new double[3];
_pigeon.getYawPitchRoll(ypr);
System.out.println("Pigeon Yaw is: " + ypr[0]);

}
}

Tip: Image below can be dragged/dropped into LabVIEW editor.

Confirm that the output matches the Self-test Snapshot results.
If using LabVIEW plotter or SmartDash plotting, send the Yaw value into the plotted channel.
Then confirm Yaw value provides a smooth curve while robot is rotated by hand.

88 Chapter 2. Follow these instructions in order!

https://pro.docs.ctr-electronics.com/en/stable/

Phoenix

2.14.4 Temperature Calibration

The greatest source of yaw drift in the FRC use case is drift due to changes in temperature.
This can be compensated by running the temperature self-calibration once.
In previous seasons this can be invoked via Phoenix API.

However, starting in 2019, you can manually enter temperature compensation mode by open-
ing the Pigeon IMU Cal tab (go to Windows in the top menu bar).
Select the specific Pigeon in the top drop down, and press the Enter Temperature Calibration
button. Self-test Snapshot can be used to monitor the progress.

Note: There is no harm in starting a temp calibration, and aborting by power cycling. Previ-

2.14. Bring Up: Pigeon IMU 89

Phoenix

ous temp calibration (if present) is overridden at the very end of the procedure. See Self-test
Snapshot for current state of Temperature Calibration and Compensation.

Temperature Calibration procedure

When temperature-calibrating the Pigeon, the user should first observe the impact of tem-
perature by cleanly booting the system and observing the critical values (such as yaw) while
heating the Pigeon. This can be done by self-testing the Pigeon in Phoenix Tuner or printing
the critical values in a robot application.
1. Place the Pigeon on a reasonably level surface such that it stays still.
2. After it boot calibrates, heat the Pigeon. A simple off the shelf halogen desk lamp is
sufficient to heat.

3. Observe the critical values as the temperature increases. Some IMU chips are very
temperature sensitive and will experience a drift in yaw by over 40 degrees, while others
may not drift at all.

After having observed the impact of temperature on the critical values, you can go about
calibrating it from that drift.
1. Ensure Pigeon is cool before beginning temperature calibration. This can be confirmed
with a Self-test Snapshot or by printing the temperature in a robot application.

2. Enter temperature calibration mode. This is done either using the API or using Phoenix
Tuner

3. Heat the Pigeon.
4. Once the Pigeon has seen a sufficient range of temperatures, it will momentarily blink
green, then cleanly boot-calibrate.

5. Perform a Self-test Snapshot on the Pigeon. It should read “Temperature calibration
exists” along with a description of whether it will use it or not and for what reason if not.

90 Chapter 2. Follow these instructions in order!

Phoenix

2.14. Bring Up: Pigeon IMU 91

Phoenix

6. After the Pigeon has boot-calibrated, re-observe the effect of temperature on the critical
values’ drift using the above procedure.

7. While re-observing, notice the tempCompensationCount tracker tick up as the Pigeon
compensates for temperature.

2.15 Bring Up: Pigeon 2.0

2.15.1 Power Boot

Pigeon 2.0 measurements can be obtained immediately after boot.

2.15.2 Phoenix Tuner

Open Phoenix tuner and use the Self-test Snapshot feature to confirm values. Rotate IMU
and confirm Yaw moves as expected.

92 Chapter 2. Follow these instructions in order!

Phoenix

Tip: There is a modernized version called Tuner X that is available for Windows and Android
devices (works with Phoenix 5 and Phoenix Pro).

Note: Moving counter-clockwise is interpreted as a positive change.

2.15. Bring Up: Pigeon 2.0 93

https://pro.docs.ctr-electronics.com/en/stable/docs/tuner/index.html
https://pro.docs.ctr-electronics.com/en/stable/

Phoenix

2.15.3 Pigeon API

Create a Pigeon 2 object in your robot application and poll the Yaw value.

Note: Pigeon 2.0 uses a different class than Pigeon 1. It is named Pigeon2 instead of
PigeonIMU.

import com.ctre.phoenix.sensors.Pigeon2;
public class Robot extends TimedRobot {

Pigeon2 _pigeon = new Pigeon2(0, "rio");
int _loopCount = 0;

public void teleopPeriodic() {
if(_loopCount++ > 10)
{

_loopCount = 0;
double yaw = _pigeon.getYaw();
System.out.println("Pigeon Yaw is: " + yaw);

}
}

Confirm that the output matches the Self-test Snapshot results.
If using LabVIEW plotter or SmartDash plotting, send the Yaw value into the plotted channel.
Then confirm Yaw value provides a smooth curve while robot is rotated by hand.

2.16 Bring Up: CANifier

2.16.1 Phoenix Tuner

Using Self-test Snapshot, confirm all sensor inputs required by the robot application.
If using Limit switches, assert each switch one at time. Self-test Snapshot after each transition
to confirm wiring.
If using Quadrature or Pulse width sensor, rotate sensor while performing Self-test Snapshot
to confirm sensor values.

94 Chapter 2. Follow these instructions in order!

Phoenix

2.16. Bring Up: CANifier 95

Phoenix

Tip: There is a modernized version called Tuner X that is available for Windows and Android
devices (works with Phoenix 5 and Phoenix Pro).

2.16.2 LED Strip Control

See CANifier user’s guide for wiring and controlling LED Strip.

2.16.3 CANifier API

Create a CANifier object in your robot application and poll whatever sensor you have con-
nected to it or the bus voltage

import com.ctre.phoenix.CANifier;
public class Robot extends TimedRobot {

CANifier _canifier = new CANifier(0);
int _loopCount = 0;

public void teleopPeriodic() {
if(_loopCount++ > 10)
{

_loopCount = 0;
System.out.println("Bus voltage is: " + _canifier.getBusVoltage());

}
}

Confirm output matches Self-test Snapshot results.

2.17 Bring Up: CANCoder

Note: As of late August 2022, there are multiple hardware versions of CANCoder avail-
able. This is due to the ongoing worldwide chip shortage causing CTR electronics to replace
the original processor with a substitute. This new version of CANCoder requires a differ-
ent firmware, but is otherwise functionally identical to the original. For details on how to
determine what hardware version a CANCoder is, look at the CANCoder Versions section.

96 Chapter 2. Follow these instructions in order!

https://pro.docs.ctr-electronics.com/en/stable/docs/tuner/index.html
https://pro.docs.ctr-electronics.com/en/stable/
https://store.ctr-electronics.com/content/user-manual/CANifier%20User%27s%20Guide.pdf

Phoenix

2.17.1 Magnet Placement

Using the CANCoder User’s Guide, verify that magnet placement is correct for the CANCoder.

2.17.2 Phoenix Tuner

Open Phoenix tuner and use the Self-test Snapshot feature to confirm values. By default, the
position value is in units of degrees.

Tip: There is a modernized version called Tuner X that is available for Windows and Android
devices (works with Phoenix 5 and Phoenix Pro).

2.17. Bring Up: CANCoder 97

https://pro.docs.ctr-electronics.com/en/stable/docs/tuner/index.html
https://pro.docs.ctr-electronics.com/en/stable/

Phoenix

2.17.3 Choose Sensor Direction

Choose which direction of the sensor is positive using the “Sensor Direction” config setting.

By default, positive direction is counter-clockwise rotation of the magnet when looking at the
magnet side of the CANCoder.
Use the self-test snapshot to confirm the sensor value changes as expected for the chosen
direction.

2.17.4 Choose Sensor Boot-Initialization Strategy

Select whether the CANCoder position should initialize to 0 or initialize to the absolute posi-
tion measurement.

98 Chapter 2. Follow these instructions in order!

Phoenix

2.17.5 Choose Absolute Sensor Range

Select whether the absolute position value should range from 0 degrees to 360 degrees or
-180 to +180.

2.17. Bring Up: CANCoder 99

Phoenix

2.17.6 Choose Absolute Sensor Offset

Choose an offset for the 0 point of the absolute measurement.
By default, this 0 point is when the magnet’s north aligns with the LED on the CANCoder.

Note: For mechanisms with a fixed range of motion, the offset should be set so that the
discontinuity of the absolute measurement (ie, the rollover from 360 -> 0 or 180 -> -180)
does not occur in the mechanism’s range of motion.

2.17.7 CANCoder API

Create a CANCoder object in your robot project and poll the position value.

import com.ctre.phoenix.sensors.CANCoder;
public class Robot extends TimedRobot {

CANCoder _coder = new CANCoder(1);
int _loopCount = 0;

public void teleopPeriodic() {
if(_loopCount++ > 10)
{

_loopCount = 0;
int degrees = _coder.getPosition();
System.out.println("CANCoder position is: " + degrees);

}
}

Confirm that the output matches the self-test snapshot results.

100 Chapter 2. Follow these instructions in order!

Phoenix

2.17.8 CANCoder Versions

CANCoder has two hardware versions, the original “CANCoder” and the newer “CANCoder
vers. H” or “CANCoder vH” for short. Each hardware version has a unique crf that’s associ-
ated with it, which means it is not possible to flash “CANCoder” firmware onto a “CANCoder
vH” or vice versa.

Identification

Connect Tuner to the robot in order to identify what hardware version a CANCoder is, as the
version is displayed in the Hardware column. In addition, the Manufacture Date, Bootloader
Revision, and Hardware Version columns will all be different between original CANCoders
and CANCoder vH’s. Below is a screenshot of two CANCoders, one original CANCoder and
another CANCoder vH, to better illustrate this.

Firmware Upgrade

Firmware upgrading the CANCoder vH is performed the same way as the original CANCoder.
Select the CRF and update the device.

Note: CANCoder vH’s have a different firmware CRF than original CANCoders. Make sure
the filename is correct.

If the wrong CRF is selected (such as an original CANCoder crf for a CANCoder vH), Tuner
will fail with CTRE_DI_InvalidCrfWrongProduct in the bottom right of the screen, and the text
box will report “Selected CRF is for the wrong product”. A screenshot of this state is below.

2.17. Bring Up: CANCoder 101

Phoenix

2.18 Bring Up: CANdle

For wiring see the CANdle Hardware User Manual on the product page:
https://store.ctr-electronics.com/candle/
By default CANdle is configured to use GRB addressable LED strips. Use Phoenix Tuner to
change the LED Strip Type config to match the physical LED strip being used.

Note: CANdle’s latest features require using this development build of Phoenix (via the
online install method) along with latest CANdle firmware (21.1.1.0).
The development release is a small feature-improvement release based on the latest public
full release - while it hasn’t gone through the entire rigorous test process for a full release
the specific changes are minor and well-tested so it’s safe to use on your robot.
The dev release enables use of the multi-animation CANdle features without waiting for the
next full release.

2.18.1 CANdle API

CANdle’s API calls can be found here: C++ | Java

102 Chapter 2. Follow these instructions in order!

https://store.ctr-electronics.com/candle/
https://maven.ctr-electronics.com/development/com/ctre/phoenix/frcjson/5.21.1-24-g046ee8a/frcjson-5.21.1-24-g046ee8a.json
https://docs.ctre-phoenix.com/en/stable/ch05a_CppJava.html#frc-c-java-add-phoenix
https://github.com/CrossTheRoadElec/Phoenix-Releases/tree/master/ctr-device-firmware
https://store.ctr-electronics.com/content/api/cpp/html/classctre_1_1phoenix_1_1led_1_1_c_a_ndle.html
https://store.ctr-electronics.com/content/api/java/html/classcom_1_1ctre_1_1phoenix_1_1led_1_1_c_a_ndle.html

Phoenix

2.18.2 Examples

There is a basic example for using CAndle here: C++ | Java
An advanced example using multiple animations can be found here: Java

2.19 Bring Up: Talon FX/SRX and Victor SPX

At this point all Talon and Victors should appear in Tuner with up to date firmware. The next
goal is to drive the motor controller manually. This is done to confirm/test:
• Motor and motor wiring
• Transmission/Linkage
• Mechanism design
• Motor Controller drive (both directions)
• Motor Controller sensor during motion

Note: Talon FX/SRX and Victor SPX can be used with PWM or CAN bus. This document
covers the CAN bus use-case.

Before we enable the motor controller, first check or reset the configs in the next section.

2.19.1 Factory Default Motor Controller

Open the config view to see all persistent settings in the motor controller. This can be done
in the config tab (Windows => Config).
Select the Victor or Talon in the center-top dropdown. This will reveal all persistent config
settings.
Press Factory Default to default the motor controller settings so that it has predictable be-
havior.

2.19. Bring Up: Talon FX/SRX and Victor SPX 103

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/tree/master/C%2B%2B%20General/CANdle
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/tree/master/Java%20General/CANdle
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/tree/master/Java%20General/CANdle%20MultiAnimation

Phoenix

Tip: There is a modernized version called Tuner X that is available for Windows and Android
devices (works with Phoenix 5 and Phoenix Pro).

Tip: Right-click anywhere in the property inspector and select Collapse-all to collapse each
config group.

Tip: Other configs can be set in this view for testing purposes. For example, you may want to
restrict the maximum output for testing via the Peak output settings under “Motor Output”.

Tip: When a setting is modified, it is set to bold to indicate that it is pending. The bold state
will clear after you Save.

Tip: If changing a config live in the robot controller, use the Refresh/Revert button to confirm
setting in Tuner.

Note: CTRE devices can be factory defaulted via the API, and through the B/C mechanical
button.

104 Chapter 2. Follow these instructions in order!

https://pro.docs.ctr-electronics.com/en/stable/docs/tuner/index.html
https://pro.docs.ctr-electronics.com/en/stable/

Phoenix

Note: Neutral Mode will not change during factory default as it is stored separately from
the other persistent configs.

2.19.2 Configuration

Configurable settings are persistent settings that can be modified via the Phoenix API (from
robot code) or via Tuner (Config tab). They can also be factory defaulted using either method.
Configs are modified via the config* routines and LabVIEW Vis. There are two general meth-
ods for robust operation of a robot. Additionally you can modify the configs via Tuner.

Method 1 – Use the configAll API

Starting with 2019, there is a single routine/VI for setting all of the configs in a motor con-
troller. This ensures that your application does not need to be aware of every single config
in order to reliably configure a fresh or unknown motor controller.
This is the recommend API for new robot projects.

Tip: Config structure/object defaults all values to their factory defaults. This means gener-
ally you only need to change the settings you care about.

Tip: When using C++/Java, leverage the IntelliSense (Auto-complete) features of the IDE to
quickly discover the config settings you need.

Method 2 – Factory Default and config* routines

Phoenix provides individual config* routines for each config setting. Although this is ade-
quate when the number of configs was small, this can be difficult to manage due to the many
features/configs in the CTRE motor controllers.
If using individual config routines, we recommend first calling the configFactoryDefault rou-
tine/VI to ensure motor controller is restored to a known state, thus allowing you to only
config the settings that you intend to change.
This is recommend for legacy applications to avoid porting effort.

2.19. Bring Up: Talon FX/SRX and Victor SPX 105

Phoenix

Method 3 – Use Tuner

Tuner can be used to get/set/export/import the configs.
However, it is highly recommended to ultimately set them via the software API. This
way, in the event a device is replaced, you can rely on your software to properly configured
the new device, without having to remember to use Tuner to apply the correct values.
A general recommendation is to:
• Configure all devices during robot-bootup using the API,
• Use Tuner to dial values quickly during testing/calibration.
• Export the settings so they are not lost.
• Update your software config values so that Tuner is no longer necessary.

Control Signals

The majority of the behavior in the Talon/Victor is controlled via configs, however there is a
small number of control signals that are controlled via the API.
This list includes:
• Current Limit Enable (though the thresholds are configs)
• Voltage Compensation Enable (though the nominal voltage is a config)
• Control Mode and Target/Output demand (percent, position, velocity, etc.)
• Invert direction and sensor phase
• Closed-loop slot selection [0,3] for primary and aux PID loops.
• Neutral mode override (convenient to temporarily override configs)
• Limit switch override (convenient to temporarily override configs)
• Soft Limit override (convenient to temporarily override configs)
• Status Frame Periods

These control signals do not require periodic calls to ensure they “stick”. All of the above
signals are automatically restored even after motor controller is power cycled during use
except for Status Frame Periods, which can be manually restore by polling for device resets
via hasResetOccurred().

Note: WPI motor safety features may require periodic calls to Set() if team software has
chosen to enable it.

Note: The override control signals are useful for applications that require temporarily dis-
abling or changing behavior. For example, overriding-disable the soft limits while performing
a self-calibration routine to tare sensors, then restoring soft limits for robot operation.

Note: The routines to manipulate control signals are not prefixed with config* to highlight
that they are not configs

106 Chapter 2. Follow these instructions in order!

Phoenix

2.19.3 Test Drive with Tuner

Navigate to the control tab to view the control interface. Notice there are two enable/disable
buttons. One is for non-FRC style robot-enable (alternative to the Driver Station enable), and
one is for Motor Controller Control-Enable.
Press on the question mark next to the robot disabled/enabled button.

This will reveal the full explanation of how to safely enable your motor controller. Follow the
appropriate instructions depending on if you want to use Driver Station for your robot-enable.

2.19. Bring Up: Talon FX/SRX and Victor SPX 107

Phoenix

Setting up non-FRC Control

In order to enable without the Driver Station you must use a non-roboRIO platform and dis-
connect the roboRIO from the CAN bus.
With an FRC roboRIO, you must always use the Driver Station to enable.

Confirm FRC Unlock

Self-test Snapshot Motor Controller to confirm device FRCLocked = 0.
If device is FRC Locked (=1), use factory default in the config tab to clear the state. Note that
if an FRC roboRIO is on the CAN bus, the motor controller will immediately FRC Lock again.

Note: Use the config export tool if you need to keep your config settings.

108 Chapter 2. Follow these instructions in order!

Phoenix

Control tab

Press both Robot Enabled and Control Enabled. At this point you can use the track bar to
drive the Victor/Talon.

Note: If you do connect with a roboRIO, the Talon/Victor will FRC Lock again. At which
point you must use the driver station to enable, and you no longer need to use the non-FRC
Robot enable in Tuner.

Note: Spacebar or enter can be used to clear the control tab and neutral the selected motor

2.19. Bring Up: Talon FX/SRX and Victor SPX 109

Phoenix

controller.

Plot tab

Now open the Plot window. Drive the motor controller while observing the plot. Confirm
the blue motor output curve matches LED behavior and trackbar. Confirm motor movement
follows expectations.

Note: Press the Plot enable button to effectively pause the plot for review

Note: Use the Zoom buttons to select whether the mouse adjust the Y or X axis.

Note: If using a Victor SPX, current-draw will always read zero (SPX does not have current-
measurement features).

110 Chapter 2. Follow these instructions in order!

Phoenix

Tip: Plot can be used anytime, regardless of what is commanding the motor controller (FRC
or non-FRC).

2.19.4 Test Drive with Robot Controller

Next we will create control software in the roboRIO. Currently this is necessary for more
advanced control. This is also required for controlling your robot during competition.

Tip: The latest version of Tuner allows for testing most closed-loop control modes without
writing software.

Java: Sample driving code

Below is a simple example that reads the Joystick and drives the Talon

package frc.robot;

import com.ctre.phoenix.motorcontrol.ControlMode;
import com.ctre.phoenix.motorcontrol.can.TalonSRX;

import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj.TimedRobot;

public class Robot extends TimedRobot {
TalonSRX _talon0 = new TalonSRX(0); // Change '0' to match device ID in Tuner. Use␣

↪→VictorSPX for Victor SPXs
Joystick _joystick = new Joystick(0);

@Override
public void teleopPeriodic() {

(continues on next page)

2.19. Bring Up: Talon FX/SRX and Victor SPX 111

Phoenix

(continued from previous page)
double stick = _joystick.getRawAxis(1);
_talon0.set(ControlMode.PercentOutput, stick);

}
}

Tip: Image below can be dragged/dropped into LabVIEW editor.

Deploy the project, and confirm success.

Note: WPI’s terminal output may read “Build” successful despite the project was deployed.

112 Chapter 2. Follow these instructions in order!

Phoenix

Note: Before you enable the DS, spin the Joystick axis so it reaches the X and Y extremities
are reached. USB Gamepads calibrate on-the-fly so if the Gamepad was just inserted into the
DS, it likely has not auto detected the max mechanical range of the sticks.

Note: Make sure joystick is detected by the DS before enabling.

Note: getRawAxismay not return a positive value on forward-stick. Confirm this by watching
Talon/Victor LED. Green suggests a positive output.

Enable the Driver Station and confirm:
• motor drive in both directions using gamepad stick.

2.19. Bring Up: Talon FX/SRX and Victor SPX 113

Phoenix

• motor controller LEDs show green for forward and red for reverse
Disable Driver Station after finished testing.

Note: If the LED is solid orange than use Tuner to determine the cause. Self-test Snapshot
will report the current state of the motor controller (do this while troubleshooting). Confirm
firmware is up to date.

2.19.5 Open-Loop Features

After some rudimentary testing, you will likely need to configure several open-loop features
of the Talon SRX and Victor SPX.

Note: We recommend configuring Inverts and Followers first.

Inverts

To determine the desired invert of our motor controller, we will add two more lines of call.
SetInverted is added to decide if motor should spin clockwise or counter clockwise when told
to move positive/forward (green LEDs).

Note: The selected sensor’s values are also inverted accordingly so the sensor phase does
not need to be adjusted based on motor inversion.

We also multiply the joystick so that forward is positive (intuitive). This can be verified by
watching the console print in the Driver Station.

package frc.robot;
import com.ctre.phoenix.motorcontrol.*;
import com.ctre.phoenix.motorcontrol.can.*;

import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj.TimedRobot;

public class Robot extends TimedRobot {
TalonSRX _talon0 = new TalonSRX(0);
Joystick _joystick = new Joystick(0);

@Override
public void teleopInit() {

_talon0.setInverted(false); // pick CW versus CCW when motor controller is␣
↪→positive/green
}

@Override
public void teleopPeriodic() {

double stick = _joystick.getRawAxis(1) * -1; // make forward stick positive
System.out.println("stick:" + stick);

(continues on next page)

114 Chapter 2. Follow these instructions in order!

Phoenix

(continued from previous page)
_talon0.set(ControlMode.PercentOutput, stick);

}
}

Tip: Image below can be dragged/dropped into LabVIEW editor.

Talon FX Specific Inverts

Talon FX has a new set of inverts that are specific to it, TalonFXInvertType.Clockwise and
TalonFXInvertType.CounterClockwise. These new inverts allow the user to know exactly what
direction the Falcon 500 will spin. These inverts are from the perspective of looking at the
face of the motor.
Below is an image demonstrating the Falcon’s Clockwise rotation:

And below is the Falcon’s CounterClockwise rotation:

2.19. Bring Up: Talon FX/SRX and Victor SPX 115

Phoenix

Follower

If a mechanism requires multiple motors, than there are likely multiple motor controllers.
The Follower feature of the Talon FX/SRX and Victor SPX is a convenient method to keep
two or more motor controller outputs consistent. If you have an external sensor for closed-
looping, connect that to the “master” Talon SRX (unless it is a remote sensor such as CAN-
coder/CANifier/Pigeon).
Below we’ve added a new Victor to follow Talon 0.
Generally, a follower is intended to match the direction of the master, or drive in the opposite
direction depending on mechanical orientation. In previous seasons teams would have to
update the bool true/false of the follower to match or oppose the master manually.
Starting in 2019, C++/Java users can set the setInverted(InvertType) to instruct the motor
controller to either match or oppose the direction of the master instead.

package frc.robot;

import com.ctre.phoenix.motorcontrol.*;
import com.ctre.phoenix.motorcontrol.can.*;

import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj.TimedRobot;

public class Robot extends TimedRobot {
TalonSRX _talon0 = new TalonSRX(0);
VictorSPX _victor0 = new VictorSPX(0);
Joystick _joystick = new Joystick(0);

@Override
public void teleopInit() {

_victor0.follow(_talon0);
(continues on next page)

116 Chapter 2. Follow these instructions in order!

Phoenix

(continued from previous page)

_talon0.setInverted(false); // pick CW versus CCW when motor controller is␣
↪→positive/green

_victor0.setInverted(InvertType.FollowMaster); // match whatever talon0 is
//_victor0.setInverted(InvertType.OpposeMaster); // opposite whatever talon0 is

}

@Override
public void teleopPeriodic() {

double stick = _joystick.getRawAxis(1) * -1; // make forward stick positive
System.out.println("stick:" + stick);

_talon0.set(ControlMode.PercentOutput, stick);
}

}

Tip: Image below can be dragged/dropped into LabVIEW editor.

Note: LabVIEW does not support using InvertType to follow master or oppose master

Enable the Driver Station and slowly drive both MCs from neutral. Confirm both LEDs are
blinking the same color.
Disable Driver Station when complete.
To confirm motor controllers are truly driving in the same direction, disconnect the master
motor controller from its motor.
Enable the Driver Station and confirm follower motor direction matches previously measured
master motor direction.
Disable Driver Station when complete.
Open Tuner and select the master motor controller.
Open plot tab and enable plotter while driving motor controller
Confirm current plot is appropriate. If motors are free-spinning, then current should be near
0 if motor output is constant. When testing drive train, the robot should be rested on a
crate/tote to ensure all wheels spin freely.
Select follower motor in Tuner, and confirm current via plot.

Note: Follower mode can be canceled by calling set() with any other control mode, or calling

2.19. Bring Up: Talon FX/SRX and Victor SPX 117

Phoenix

neutralOutput().

Note: Calling follow() in the periodic loop is not required, but also does not affect anything
in a negative way.

Controlling Followers with Phoenix Tuner

Oftentimes you want to test/tune amechanismwith amaster motor controller and one or more
followers. This can be accomplished with Phoenix Tuner in the same manner as if there was
only one controller, as long as the followers are configured to follow the master. This
means you cannot run a temporary diagnostic server to control multiple motor controllers
at the same time.
It is imperative to make sure the followers are configured correctly by following the steps
above. The followers will use their settings from the user application, even when following a
master controlled by Tuner.

Tip: This is the recommended way to tune two or more mechanically linked motors. By hav-
ing one motor controller as a master, it will handle the PID closed looping while all followers
match the applied output of the master.

Neutral Mode

You may note that when the motor output transitions to neutral, the motors free spin (coast)
in the last direction they were driven. If the Talon/Victor is set to “coast” neutral mode, then
this is expected. The neutral mode can also be set to “brake” to electrically common the
motor leads during neutral, causing a deceleration that combats the spinning motor motion.

Tip: You can use Talon FX’s ConfigStatorCurrentLimit method to dial in how strong the
brake is.

Note: SetNeutralMode() can be used change the neutral mode on the fly.

TalonSRX talon = new TalonSRX(0);
talon.setNeutralMode(NeutralMode.Brake);

Tip: Image below can be dragged/dropped into LabVIEW editor.

118 Chapter 2. Follow these instructions in order!

Phoenix

Follower motor controllers have separate neutral modes than their masters, so you must
choose both. Additionally, youmaywant tomix your neutral modes to achieve a partial electric
brake when using multiple motors.

Neutral Deadband

A device’s neutral deadband is the region where the controller demotes its output to neutral.
This can be configured in your robot code, with a default value of 0.04 or 4%, and a range of
[0.001, 0.25] or [0.1%, 25%].

_talon.configNeutralDeadband(0.001); /* Configures _talon to use a neutral deadband␣
↪→of 0.1% */

Talon FX has 3 different deadband strategies based on its state. They are Simple, Continuous,
and None.
A Simple deadband will demote any requested output within the region to neutral, and oth-
erwise uphold the requested demand. An example of this is with a configured deadband of
4% and a requested output of 4% will be 0%, 5% output will be 5%, and 100% will be 100%.
This is used in the majority of circumstances so it’s obvious that the requested output is the
applied output outside the neutral deadband.
A Continuous deadband is similar to a simple deadband in that it demotes any requested
output within the region to neutral, but outside the region it will scale the applied output
so it’s continuous out of the deadband thresholds. This allows for a smooth transition out of
neutral. With a 4% deadband, a requested output of 4% will result in an applied output of
0%, requesting 5% will bring it to 1%, and 100% will be 100%.
A None deadband will not uphold the deadband whatsoever. A deadband of 4% with 4%
requested output will apply 4%, 5% is 5%, and 100% is 100%. This is used only in follower
mode so you don’t have to configure the deadband of your followers, only of the master.
The below graph highlights this, exaggerating the effect to make it obvious.

The below table details what neutral deadband strategy the Talon FX uses under the various
states.

2.19. Bring Up: Talon FX/SRX and Victor SPX 119

Phoenix

Table 4: Talon FX Neutral Deadband Strategies
Mode Condition Deadband Type
PWM Control X Continuous
Percent Output Voltage Compensation Dis-

abled
Continuous

Percent Output Voltage Compensation En-
abled

Simple

Closed Loop X Simple
Auxiliary Follower X Simple
Follower X None

Ramping

The motor controller can be set to honor a ramp rate to prevent instantaneous changes in
throttle. This ramp rate is in effect regardless of which mode is selected (throttle, follower,
or closed-loop).
Ramp can be set in time from neutral to full using configOpenLoopRampRate().

Note: configClosedLoopRampRate() can be used to select the ramp during closed-loop (sen-
sor) operations.

Note: The slowest ramp possible is ten seconds (from neutral to full), though this is quite
excessive.

TalonSRX talon = new TalonSRX(0);
talon.configOpenloopRamp(0.5); // 0.5 seconds from neutral to full output (during␣
↪→open-loop control)
talon.configClosedloopRamp(0); // 0 disables ramping (during closed-loop control)

Tip: Images below can be dragged/dropped into LabVIEW editor.

120 Chapter 2. Follow these instructions in order!

Phoenix

Peak/Nominal Outputs

Often a mechanism may not require full motor output. The application can cap the output via
the peak forward and reverse config setting (through Tuner or API).
Additionally, the nominal outputs can be selected to ensure that any non-zero requested mo-
tor output gets promoted to a minimum output. For example, if the nominal forward is set
to +0.10 (+10%), then any motor request within (0%, +10%) will be promoted to +10% as-
suming request is beyond the neutral dead band. This is useful for mechanisms that require
a minimum output for movement, and can be used as a simpler alternative to the kI (integral)
component of closed-looping in some circumstances.

Voltage Compensation

Talon FX/SRX and Victor SPX can be configured to adjust their outputs in response to the
battery voltage measurement (in all control modes). Use the voltage compensation saturation
config to determine what voltage represents 100% output.
Then enable the voltage compensation using enableVoltageCompensation().
Advanced users can adjust the Voltage Measurement Filter to make the compensation more
or less responsive by increasing or decreasing the filter. This is available via API and via
Tuner

TalonSRX talon = new TalonSRX(0);
talon.configVoltageCompSaturation(11); // "full output" will now scale to 11 Volts␣
↪→for all control modes when enabled.
talon.enableVoltageCompensation(true); // turn on/off feature

Tip: Image below can be dragged/dropped into LabVIEW editor.

Current Limit

Legacy API

Talon FX/SRX supports current limiting in all control modes.
The limiting is characterized by three configs:
• Peak Current (Amperes), threshold that must be exceeded before limiting occurs.
• Peak Time (milliseconds), thresholds that must be exceed before limiting occurs
• Continuous Current (Amperes), maximum allowable current after limiting occurs.

2.19. Bring Up: Talon FX/SRX and Victor SPX 121

Phoenix

TalonSRX talon = new TalonSRX(0);
talon.configPeakCurrentLimit(30); // don't activate current limit until current␣
↪→exceeds 30 A ...
talon.configPeakCurrentDuration(100); // ... for at least 100 ms
talon.configContinuousCurrentLimit(20); // once current-limiting is activated, hold␣
↪→at 20A
talon.enableCurrentLimit(true);

Tip: Image below can be dragged/dropped into LabVIEW editor.

If enabled, Talon SRX will monitor the supply-current looking for a conditions where current
has exceeded the Peak Current for at least Peak Time. If detected, output is reduced until
current measurement is at or under Continuous Current.

Note: If Peak current limit is set less than continuous limit, peak current limit will be set
equal to continuous current limit.

Once limiting is active, current limiting will deactivate if motor controller can apply the re-
quested motor output and still measure current-draw under the Continuous Current Limit.

122 Chapter 2. Follow these instructions in order!

Phoenix

After setting the three configurations, current limiting must be enabled via enableCur-
rentLimit() or LabVIEW VI.

Note: Use Self-test Snapshot to confirm if Current Limiting is occurring

Note: If peak limit is less than continuous limit, peak is set equal to continuous

Note: If you only want continuous limiting, you should set peak limit to 0

New API in 2020

Talon FX supports both stator(output) current limiting and supply(input) current limiting.
Supply current is current that’s being drawn at the input bus voltage. Stator current is current
that’s being drawn by the motor.
Supply limiting (supported by Talon SRX and FX) is useful for preventing breakers from trip-
ping in the PDP.
Stator limiting (supported by Talon FX) is useful for limiting acceleration/heat.
The new API leverages the configSupplyCurrentLimit and configStatorCurrentLimit routines.
The configs are similar to the existing legacy API, but the configs have been renamed to better

2.19. Bring Up: Talon FX/SRX and Victor SPX 123

Phoenix

communicate the design intent. For example, instead of configPeakCurrentLimit, the setting
is referred to as triggerThresholdCurrent.

/**
* Configure the current limits that will be used
* Stator Current is the current that passes through the motor stators.
* Use stator current limits to limit rotor acceleration/heat production
* Supply Current is the current that passes into the controller from the supply
* Use supply current limits to prevent breakers from tripping
*
* enabled |␣

↪→Limit(amp) | Trigger Threshold(amp) | Trigger Threshold Time(s) */
_tal.configStatorCurrentLimit(new StatorCurrentLimitConfiguration(true, 20, ␣

↪→ 25, 1.0));
_tal.configSupplyCurrentLimit(new SupplyCurrentLimitConfiguration(true, 10, ␣

↪→ 15, 0.5));

An example of this is available on our Github Examples repository

2.19.6 Reading status signals

The Talon FX/SRX and Victor SPX transmit most of their status signals periodically, i.e. in an
unsolicited fashion. This improves bus efficiency by removing the need for “request” frames,
and guarantees that the signals necessary for the wide range of use cases they support are
available.
These signals are available in API regardless of what control mode the Talon SRX is in. Addi-
tionally the signals can be polled using Phoenix Tuner using the Self-test Snapshot button.
Included in the list of signals are:
• Quadrature Encoder Position, Velocity, Index Rise Count, Pin States (A, B, Index)
• Analog-In Position, Analog-In Velocity, 10bit ADC Value,
• Battery Voltage, Current, Temperature
• Fault states, sticky fault states,
• Limit switch pin states
• Applied Throttle (duty cycle) regardless of control mode.
• Applied Control mode: Voltage % (duty-cycle), Position/Velocity closed-loop, or follower.
• Brake State (coast vs brake)
• Closed-Loop Error, the difference between closed-loop set point and actual posi-
tion/velocity.

• Sensor Position and Velocity, the signed output of the selected Feedback device (robot
must select a Feedback device, or rely on default setting of Quadrature Encoder).

• Integrated Sensor (Talon FX).
• Magnet position and strength (CANCoder).

Tip: In LabVIEW, these signals can all be obtained from the “Get” VI from the motor con-
troller’s sub-palette. Choose the type of signals desired from the VI’s drop-down menu.

124 Chapter 2. Follow these instructions in order!

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages

Phoenix

2.19.7 Limit Switches

Talon SRX and Victor SPX have limit features that will auto-neutral the motor output if a limit
switch activates. Talon SRX in particular can automatically do this when limit switches
are connected via the Gadgeteer feedback port.
An “out of the box” Talon will default with the limit switch setting of “Normally Open”
for both forward and reverse. This means that motor drive is allowed when a limit switch
input is not closed (i.e. not connected to ground). When a limit switch input is closed (is
connected to ground) the Talon SRX will disable motor drive and individually blink both LEDs
red in the direction of the fault (red blink pattern will move towards the M+/white wire for
positive limit fault, and towards M-/green wire for negative limit fault).
Since an “out of the box” Talon will likely not be connected to limit switches (at least not
initially) and because limit switch inputs are internally pulled high (i.e. the switch is open),
the limit switch feature is default to “normally open”. This ensures an “out of the box” Talon
will drive even if no limit switches are connected.
For more information on Limit Switch wiring/setup, see the Talon SRX User’s Guide.

2.19. Bring Up: Talon FX/SRX and Victor SPX 125

Phoenix

Limit switch features can be disabled or changed to “Normally Closed” in Tuner and in API.

Note: When the source is set to Gadgeteer, the “Device ID” field is ignored. This config is
used for remote limit switches (see next section).

Confirm the limit switches are functional by applying a weak positive motor output while
tripping the forward limit switch.

Note: The motor does not have to be physically connected to the motor-controller if tester
can artificially assert physical limit switch.

/* Configured forward and reverse limit switch of Talon to be from a feedback␣
↪→connector and be normally open */
Hardware.leftTalonMaster.configForwardLimitSwitchSource(LimitSwitchSource.
↪→FeedbackConnector, LimitSwitchNormal.NormallyOpen, 0);
Hardware.leftTalonMaster.configReverseLimitSwitchSource(LimitSwitchSource.
↪→FeedbackConnector, LimitSwitchNormal.NormallyOpen, 0);

126 Chapter 2. Follow these instructions in order!

Phoenix

Limit Switch Override Enable

The enable state of the limit switches can be overridden in software. This can be called at
any time to enable or disable both limit switches.
Generally you should call this instead of a config if you want to dynamically change whether
you are using the limit switch or not inside a loop. This value is not persistent across power
cycles.

/* Limit switches are forced disabled on Talon and forced enabled on Victor */
Hardware.leftTalonMaster.overrideLimitSwitchesEnable(false);
Hardware.rightVictorMaster.overrideLimitSwitchesEnable(true);;

Limit Switch As Digital Inputs

Limit switches can also be treated as digital inputs. This is done in Java/C++ by using the
isFwdLimitSwitchClosed & isRevLimitSwitchClosed method.

_talon.getSensorCollection().isFwdLimitSwitchClosed();
_talon.getSensorCollection().isRevLimitSwitchClosed();

Note: The sensor being closed returns true in all cases, and the sensor being open returns
false in all cases, regardless of normally open/normally closed setting. This ensures there is
no ambiguity in the function name.

Remote Limit Switches

A Talon SRX or Victor SPX can use a remote sensor as the limit switch (such as another Talon
SRX or CANifier).
Change the Limit Forward/Reverse Source to Remote Talon or Remote CANifier. Then
config the Limit Forward/Reverse Device ID for the remote Talon or CANifier.

/* Configured forward and reverse limit switch of a Victor to be from a Remote Talon␣
↪→SRX with the ID of 3 and normally closed */
Hardware.rightVictorMaster.configForwardLimitSwitchSource(RemoteLimitSwitchSource.
↪→RemoteTalonSRX, LimitSwitchNormal.NormallyClosed, 3, 0);
Hardware.rightVictorMaster.configReverseLimitSwitchSource(RemoteLimitSwitchSource.
↪→RemoteTalonSRX, LimitSwitchNormal.NormallyClosed, 3, 0);

Use Self-test Snapshot on the motor-driving motor controller to confirm limit switches are
interpreted correctly. If they are not correct, then Self-test Snapshot the remote device to
determine the issue.

2.19. Bring Up: Talon FX/SRX and Victor SPX 127

Phoenix

2.19.8 Soft Limits

Soft limits can be used to disable motor drive when the “Sensor Position” is outside of a
specified range. Forward throttle will be disabled if the “Sensor Position” is greater than the
Forward Soft Limit. Reverse throttle will be disabled if the “Sensor Position” is less than the
Reverse Soft Limit. The respective Soft Limit Enable must be enabled for this feature to take
effect.

/* Talon configured to have soft limits 10000 native units in either direction and␣
↪→enabled */
rightMaster.configForwardSoftLimitThreshold(10000, 0);
rightMaster.configReverseSoftLimitThreshold(-10000, 0);
rightMaster.configForwardSoftLimitEnable(true, 0);
rightMaster.configReverseSoftLimitEnable(true, 0);

The settings can be set and confirmed in Phoenix Tuner

2.20 Bring Up: Talon FX/SRX Sensors

This section is dedicated to validating any rotary sensor attached to the Talon SRX and the
integrated sensor on the Talon FX. Generally attaching a sensor is necessary for:
• Close-Loop control modes (Position, MotionMagic, Velocity, MotionProfile)
• Soft limits (auto neutral motor if out of range)

2.20.1 Sensor Options

Many feedback interfaces are supported. The complete list is below.

Talon FX Integrated Sensor

The Talon FX has a sensor integrated into the controller. This is necessary for the brushless
commutation and allows the user to use the Talon FX with a high resolution sensor without
attaching any extra hardware.
In order to verify the Integrated Sensor is working, select the Talon FX in the dropdown.

And take a self-test snapshot of the Talon FX. Focus on the integrated sensor section of the
snapshot and verify that rotating the shaft results in a change of position.

128 Chapter 2. Follow these instructions in order!

Phoenix

CANCoder

CANCoder is a great sensor to use for applications that require an absolute measurement of
a mechanism or would otherwise require a long wire run back to a Talon SRX, CANifier, RIO,
etc. If you are using a CANCoder, look at the Bring Up: CANCoder document.

2.20. Bring Up: Talon FX/SRX Sensors 129

Phoenix

Talon SRX External Ribbon Cabled Sensors

There are many external sensors that are compatible with the Talon SRX in order to utilize
its closed-loop functionality or read inside your robot code.

Quadrature

The Talon directly supports quadrature sensors. The decoding is done in 4x mode (every edge
on A and B are counted). This is available via the Gadgeteer feedback port.

Tip: Quadrature resets to 0 on power boot.

To verify your quadrature sensor is properly connected to the Talon SRX, select it in the
dropdown and take a self-test snapshot of the Talon. Notice the Quadrature section displays
all the relevant information about the quadrature sensor.

130 Chapter 2. Follow these instructions in order!

Phoenix

Move the mechanism and take another self test. The position should have changed. If it
didn’t, there’s an issue between the sensor and the Talon SRX.

2.20. Bring Up: Talon FX/SRX Sensors 131

Phoenix

132 Chapter 2. Follow these instructions in order!

Phoenix

Analog (Potentiometer or Encoder)

Analog feedback sensors are sensors that provide a variable voltage to represent position.
Some devices (such as the MA3 US Digital encoder) are continuous and wrap around from
3.3V back to 0V. In such cases the overwrap is tracked, and Talon continues counting 1023
=> 1024.
This feature can be disabled by setting the config via API or Tuner.

To check that the analog sensor is working, select your Talon in the drop down and take a self-
test snapshot. The Analog section of the snapshot displays all relevant information regarding
your analog sensor.

Tip: Analog should read ~100 units if floating. If an analog sensor is meant to be in-circuit,
recheck sensor signal/power/harness/etc.

2.20. Bring Up: Talon FX/SRX Sensors 133

Phoenix

134 Chapter 2. Follow these instructions in order!

Phoenix

Pulse Width Decoder

For sensors that encode position as a pulse width this mode can be used to decode the position.
The pulse width decoder is <1us accurate and the maximum time between edges is 120 ms.
To check that the pulse width sensor is working, select your Talon in the drop down and take a
self-test snapshot. The PulseWidth section displays all information regarding the pulse width
sensor.

Tip: If using a Talon Tach, focus on the “Velocity (if Tachometer)” value

2.20. Bring Up: Talon FX/SRX Sensors 135

Phoenix

Cross The Road Electronics Magnetic Encoder (Absolute and Relative)

The CTREMagnetic Encoder is actually two sensor interfaces packaged into one (pulse width
and quadrature encoder). Therefore the sensor provides two modes of use: absolute and
relative. Each mode provides 4096 units per rotation.

Tip: Inspect the ribbon cable for any frayed or damaged sections.

Tip: Confirm the green LED. When using Versa-Planetary Sensor Slice, orange LED is ac-
ceptable.

Warning: When using a contactless sensor on a rolling mechanism (shooter / roller /
intake), care should be taken to ensure spinning mechanism is electrically common to the
remainder of the robot chassis. Otherwise ESD strikes can occur between mechanism and
the contactless sensor (due to its proximity to the mechanism).

The advantage of absolute mode is having a solid reference to where a mechanism is without
re-tare-ing or re-zero-ing the robot. The advantage of the relative mode is the faster update
rate. However both values can be read/written at the same time. So a combined strategy of
seeding the relative position based on the absolute position can be used to benefit from the
higher sampling rate of the relative mode and still have an absolute sensor position.

Parameter Absolute Mode Relative Mode
Update rate (period) 4 ms 100 us
Max RPM 7,500 RPM 15,000 RPM
Accuracy 12 bits (4096 units per rotation) 12 bits (4096 units per rotation)
Software API Select Pulse Width Select Quadrature

In circumstances where the absolute pulse width wraps from one extremity to the other (due
to overflow), the Talon continues counting 4095 => 4096.
This feature can be disabled by setting the config via API or Tuner.

136 Chapter 2. Follow these instructions in order!

Phoenix

In order to test that the Mag Encoder is connected properly to the Talon SRX and verify that
it is working, you should first select the Talon SRX using the drop down, and take a self-
test snapshot of the Talon. The Mag Encoder uses both Quadrature and Pulse Width, so the
relevant information for the Mag Encoder will be in both of those sections in the self-test.

2.20. Bring Up: Talon FX/SRX Sensors 137

Phoenix

138 Chapter 2. Follow these instructions in order!

Phoenix

2.20.2 Software-Select Sensor

Once you have decided what sensor you are going to use, you have to select that sensor in
the software.

Note: It is imperative that this step is done regardless of if you wish to use the device’s
closed-looping features or not.

This step is done for a number of reasons:
• It allows the device to use the selected sensor in its closed looping.
• It allows the user to use the getSelected* API

– This is updated faster than the sensor-specific gets inside the Sensor Collection.
– This obeys the sensor phase that’s been set.
– This obeys any sensor coefficient that’s been configured.

Selecting the sensor is done with either Phoenix API or Tuner. In order to select the sensor
using Tuner, choose your device in the drop down, access the Config Tab, and select the
sensor you are using.

Note: The selected “Feedback Device” defaults to Quadrature Encoder for Talon SRX, None
for Victor SPX, and Integrated Sensor for Talon FX.

To select it using Phoenix API, call configSelectedFeedbackSensor.

2.20. Bring Up: Talon FX/SRX Sensors 139

Phoenix

_tal.configSelectedFeedbackSensor(FeedbackDevice.CTRE_MagEncoder_Relative, 0, 10);

Verify the sensor has been selected by taking another self-test snapshot of the device and
confirming PID0’s Feedback is the selected sensor

Because the sensor is now “selected”, turn on the plot and hand rotate sensor back and forth.
Disable plot to pause after capturing several seconds.

140 Chapter 2. Follow these instructions in order!

Phoenix

Checks:
• Focus the velocity and position curves and look for any discontinuities in the plot.
• Shake the sensor harness while hand-turning mechanism.
• This is also a good opportunity to confirm the resolution of the sensor.

2.20.3 Sensor Check – With Motor Drive

In this step we will attempt to drive motor while monitoring sensor value. Motor controller
can be controlled using Control-tab (see previous relevant section) or controlled from robot
application via Phoenix API (see previous relevant section).

2.20. Bring Up: Talon FX/SRX Sensors 141

Phoenix

Sensor Phase

Sensor phase describes the relationship between the motor output direction (positive vs neg-
ative) and sensor velocity (positive vs negative). For soft-limits and closed-loop features to
function correctly, the sensor measurement and motor output must be “in-phase”.

Note: Talon FX automatically phases your sensor for you. It will always be correct, provided
you use the getSelected* API and have configured the selected feedback type to be integrated
sensor.

Note: Sensor phase is not the same as sensor direction. When SetInverted is called on a
motor controller, the values reported by the selected sensor are also inverted. As a result,
changing the SetInverted input does not require changing the sensor phase.

Measure Sensor Phase

Take another measurement using your preferred control method and check the sensor phase
using any of the following methods.
Here we sweep the motor output forward and reverse. Notice that sensor velocity (green)
and motor output (blue) are out of phase.

In this capture we use the Self-test Snapshot to observe the motor output and selected (PID0)
sensor velocity are signed in opposite directions. Additionally the Talon SRX noticed this and
reported a live fault of “Sensor Out of Phase”.

142 Chapter 2. Follow these instructions in order!

Phoenix

Note: Talon SRX will check sensor direction versus output direction once motor output and
velocity exceeds a minimum threshold.

Adjust Sensor Phase

If the sensor is out of phase with the motor drive, you can use any method below to align
them:
• Recommended: Use setSensorPhase routine/VI to adjust the sensor phase. If
already called, toggle the input so that the sensor phase becomes aligned with motor
output.

• Exchange/flip the green/white motor leads. This is generally not recommended
as this makes maintaining motor controller orientation across multiple robots difficult
(practice versus competition).

Warning: Do not use setInverted to correct sensor orientation with respect to mo-
tor output. setInverted synchronously inverts both signals, ensuring that sensor phase

2.20. Bring Up: Talon FX/SRX Sensors 143

Phoenix

is maintained. This is a feature that allows you to choose what direction is considered
positive without breaking closed-looping features.

Confirm Sensor Phase using API

The next test is to control the motor controller using Phoenix API on the robot controller.
This is ultimately how you will leverage the motor controller in competition.

package frc.robot;

import com.ctre.phoenix.motorcontrol.*;
import com.ctre.phoenix.motorcontrol.can.*;
import edu.wpi.first.wpilibj.*;

public class Robot extends TimedRobot {
TalonSRX _talon = new TalonSRX(0); /* make a Talon */
Joystick _joystick = new Joystick(0); /* make a joystick */
Faults _faults = new Faults(); /* temp to fill with latest faults */

@Override
public void teleopInit() {

/* factory default values */
_talon.configFactoryDefault();

/*
* choose whatever you want so "positive" values moves mechanism forward,
* upwards, outward, etc.
*
* Note that you can set this to whatever you want, but this will not fix motor
* output direction vs sensor direction.
*/
_talon.setInverted(false);

/*
* flip value so that motor output and sensor velocity are the same polarity. Do
* this before closed-looping
*/
_talon.setSensorPhase(false); // <<<<<< Adjust this

}

@Override
public void teleopPeriodic() {

double xSpeed = _joystick.getRawAxis(1) * -1; // make forward stick positive

/* update motor controller */
_talon.set(ControlMode.PercentOutput, xSpeed);
/* check our live faults */
_talon.getFaults(_faults);
/* hold down btn1 to print stick values */
if (_joystick.getRawButton(1)) {
System.out.println("Sensor Vel:" + _talon.getSelectedSensorVelocity());
System.out.println("Sensor Pos:" + _talon.getSelectedSensorPosition());
System.out.println("Out %" + _talon.getMotorOutputPercent());
System.out.println("Out Of Phase:" + _faults.SensorOutOfPhase);

(continues on next page)

144 Chapter 2. Follow these instructions in order!

Phoenix

(continued from previous page)
}

}
}

Confirm sensor velocity is in phase with motor output using any of the methods documented
above.
Below is an example screenshot of a successfully phased sensor and motor output. Both are
negative (good).

Below is an example screenshot of a successfully phased sensor and motor output. Both are
negative (in green).

2.20. Bring Up: Talon FX/SRX Sensors 145

Phoenix

Note: The natural sensor measurement (purple) under Quad is opposite of the Selected
sensor value. This is proof-positive that setSensorPhase(true) was used to adjust the sensor
phase to better match the motor voltage direction.

146 Chapter 2. Follow these instructions in order!

Phoenix

What if the sensor Phase is already correct?

The recommendation is to always call setSensorPhase routine/VI. If the phase is naturally
correct, then pass false. The reasons to do this are:
• During competition, you may find the pit-crew / repair-team wired a replacement mo-
tor/harness incorrectly and must resolve this with a “quick software fix”.

• During competition, you may find the pit-crew / repair-team wired a replacement sen-
sor/harness incorrectly and must resolve this with a “quick software fix”.

• This provides the means of changing the sensor phase to the “wrong value” during
hardware-bring up, so you can demonstrate to other teammembers what an out of phase
sensor looks like in your telemetry.

2.20.4 Confirm Sensor Resolution/Velocity

After correcting the sensor phase, the next step is to confirm sensor resolution matches your
expectations. This is an important step in sensor validation.
Listed below are the typical sensor resolutions for common sensors. Lookup your sensor type
and note the expected resolution. Call this kSensorUnitsPerRotation.

Sensor Resolution

Sensor Type Units per rotation
Quadrature Encoder : US Digital 1024 CPR 4096 (Talon SRX / CANifer counts every

edge)
CTRE Magnetic Encoder (rela-
tive/quadrature)

4096

CTRE Magnetic Encoder (absolute/pulse
width)

4096

Talon FX Integrated Sensor 2048
CANCoder 4096
Any pulse width encoded position 4096 represents 100% duty cycle
AndyMark CIMcoder 80 (because 20 pulses => 80 edges)
Analog 1024

Note: Sensor are typically reported in the raw sensor units to ensure all of the available
sensor resolution is utilized. However future releases will allow user to choose how sensor
position is interpreted (for example: degrees, radians, inches, legacy raw units, etc.). Users
can review the CANCoder API as a reference to how this will work.

Lookup the kMaxRPM of your motor. This will be advertised as the free-speed or max-velocity
of your motor.
Determine if your mechanism has a gear-ratio between the motor and your sensor. Typically
this is a reduction, meaning that there are several motor rotations per single sensor rotation.
Call this kGearRatio.
Calculate the expect peak sensor velocity (sensor units per 100ms) as:

2.20. Bring Up: Talon FX/SRX Sensors 147

Phoenix

(kMaxRPM / 600) * (kSensorUnitsPerRotation / kGearRatio)

Knowing the maximum possible sensor velocity, compare this against the sensor velocity re-
port in any of the following:
• Self-test Snapshot under selected sensor (PID0).
• getSelectedSensorVelocity() API
• Tuner plotter sensor velocity

You will likely find your ideal value is greater than your measured value due to load. In the
case of testing a drive train, it is recommend to place robot on a tote/crate so that wheels can
spin free.
If your mechanism does not allow for full motor output due to its design, choose a slower duty
cycle and scale by the expected velocity.

2.20.5 Setting Sensor Position

Depending on the sensor selected, the user can modify the “Sensor Position”. This is partic-
ularly useful when using a Quadrature Encoder (or any relative sensor) which needs to be
“zeroed” or “home-ed” when the robot is in a known position.

Auto Clear Position using Index Pin Or Limit Switches

In addition to manually changing the sensor position, the Talon SRX supports automatically
resetting the Selected Sensor Position to zero whenever a digital edge is detected.
This can be activated via config API or config tab in Tuner.
Clear Pos event can be triggered by:
• Falling edge on Forward Limit (pin 4)
• Falling edge on Reverse Limit (pin 8)
• Rising edge on Quadrature Index (pin 9)

talon.configClearPositionOnLimitF(true, timeoutMs);
talon.configClearPositionOnLimitR(true, timeoutMs);
talon.configClearPositionOnQuadIdx(true, timeoutMs);

148 Chapter 2. Follow these instructions in order!

Phoenix

Self-test Snapshot can also be used to confirm the enabling of auto zero features.

2.20. Bring Up: Talon FX/SRX Sensors 149

Phoenix

2.20.6 Velocity Measurement Filter

The Talon SRX measures the velocity of all supported sensor types as well as the current
position. Every 1ms a velocity sample is measured and inserted into a rolling average.
The velocity sample is measured as the change in position at the time-of-sample versus the
position sampled 100ms-prior-to-time-of-sample. The rolling average is sized for 64 samples.
Though these settings can be modified, the (100ms, 64 samples) parameters are default.

150 Chapter 2. Follow these instructions in order!

Phoenix

Changing Velocity Measurement Parameters.

The two configs for the Talon Velocity Measurement are:
• Sample Period (Default 100ms)
• Rolling Average Window Size (Default 64 samples).

Each can be modified through programming API, and through Tuner.

Note: When the sample period is reduced, the units of the native velocitymeasurement is still
change-in-position-per-100ms. In other words, the measurement is up-scaled to normalize
the units. Additionally, a velocity sample is always inserted every 1ms regardless of setting
selection.

Note: The Velocity Measurement Sample Period is selected from a fixed list of pre-supported
sampling periods [1, 5, 10, 20, 25, 50, 100(default)] milliseconds.

Note: The Velocity Measurement Rolling Average Window is selected from a fixed list of pre-
supported sample counts: [1, 2, 4, 8, 16, 32, 64(default)]. If an alternative value is passed
into the API, the firmware will truncate to the nearest supported value.

Recommended Procedure

The general recommended procedure is to first set these two parameters to the minimal value
of ‘1’ (Measure change in position per 1ms, and no rolling average). Then plot the measured
velocity while manually driving the Talon SRX(s) with a joystick/gamepad. Sweep the motor
output to cover the expected range that the sensor will be expected to cover.
Unless the sensor velocity is considerably fast (hundreds of sensor units per sampling period)
the measurement will be very coarse (visual stair-stepping as the motor output is increased).
Increase the sampling period until the measured velocity is sufficiently granular.
At this point the sensor velocity will have minimal stair-stepping (good) but will be quite
noisy. Increase the rolling average window until the velocity plot is sufficiently smooth, but
still responsive enough to meet the timing requirements of the mechanism.

2.20.7 Next Steps

Additionally if you need to use WPI features such as the drivetrain classes, or motor
safety, move on to WPI/NI Software Integration.
Now that you have a reliable sensor, you can setup a closed-loop. This is for use cases where
you want your mechanism to automatically move towards a target position, or hold a
target velocity. This is covered in Motor Controller Closed Loop.

2.20. Bring Up: Talon FX/SRX Sensors 151

Phoenix

2.21 Bring Up: Remote Sensors

This section provides direction for configuring and validating remote sensor setups. The
remote sensor filter feature of the Talon SRX/Victor SPX allows for the processing of sensor
values provided from other remote CAN bus devices. In other words, a Talon SRX or Vic-
tor SPX can execute closed-loop modes with sensor values sourced by other Talons,
CANifiers, or Pigeon IMUs on the same CAN-bus.
This is useful for two general reasons:
• Victor SPX does not have a Gadgeteer feedback port, so it must rely on remote sensors
for sensor data.

• Situations where the sensor is physically located too far from the motor controller for
reliable/robust wiring.

As a result, the remote sensor feature enables:
• Close-Loop control modes (Position, MotionMagic, Velocity, MotionProfile) when the sen-
sor cannot be directly connected to the motor controller.

• Soft limits (auto neutral motor if out of range) when the sensor cannot be directly
connected to the motor controller.

• Auxiliary PID1 Closed-Loop (differential mechanisms) that requires more than one
sensor source (including MotionProfileArc, and all other Closed-Loop control modes).

Note: To use Pigeon IMU as a remote sensor over gadgeteer ribbon cable you must use
Pigeon firmware 4.13 or higher. There is a bug that prevents Pigeon from appearing as a
remote sensor in some cases over gadgeteer ribbon cable that has been fixed in 4.13

2.21.1 Bring up the sensor on the remote CTRE CAN device

In order to use remote sensors, the sensor must first be validated by the device wired to
the sensor. If the sensor is not reliable at the remote device, then it will not function
when utilized remotely.
This is done by following the sensor bring up instructions for that particular device type:

Warning: In order for a motor controller to use another Talon sensor as a remote source,
that Talon must have the correct sensor type selected. In other words, if Victor X is going
to use Talon Y’s analog sensor, Talon Y must have a selected sensor type set to analog.

Warning: Remote sensors accessed by a Talon FX (Falcon 500) must have a CAN ID of 15
or less. See errata Talon FX Remote Filter Device ID Must be 15 or Less for more details.

Note: When PigeonIMU is selected as a remote sensor, the closed loop uses the Pigeon’s na-
tive units (8192 units per rotation). This can be changed by configuring a sensor coefficient
for the closed loop, see Closed-Loop Configurations.

152 Chapter 2. Follow these instructions in order!

Phoenix

2.21.2 Filter configuration

Inside Phoenix Tuner select the motor controller that will be utilizing the remote sensor data
and go to the config tab. Inside the tab go to the remote sensor portion and expand it, where
you will see filter sources and filter device IDs.

Select the dropdown for filter source 0, and you will see a list of the possible sources of a
remote sensor

Select the option that you wish to use, for the purpose of this example we will select a Re-
moteSRX_SelectedSensor that has configured a quadrature encoder, but any of these will
work.

Warning: When selecting a Pigeon IMU data, there are two separate options for Pigeon -
one for connection via CAN bus and one for connection to a remote Talon via ribbon cable.

2.21. Bring Up: Remote Sensors 153

Phoenix

As well as this, select Filter 0 Device ID and set it to the CAN device ID of the remote sensor.
Press save, making sure the text goes from bold to non-bold.

Note: If the filter source is a RemoteGadgeteerPigeon type, the filter Device ID should be
the device ID of the remote Talon SRX hosting the Pigeon IMU.

2.21.3 Sensor Check - No Motor Drive

After having the filter configured, it is important to check that it is behaving properly. Under
the closed loop section of the configs, configure PID 0 Primary Feedback Sensor to be Remote
Sensor 0 and press save.

And perform a Self-test Snapshot to make sure the configuration took place.

154 Chapter 2. Follow these instructions in order!

Phoenix

Move themechanism and perform self test snapshots to check the remote sensor is configured
correctly

Tip: If something is not behaving correctly, double check the sensor setup for that device.
If the sensor setup behaves correctly, the error is somewhere in the filter configuration

2.21. Bring Up: Remote Sensors 155

Phoenix

2.21.4 Sensor Check - With Motor Drive

See Sensor Check – With Motor Drive for the guide on checking the sensor with motor drive.

2.21.5 Remote Features Check

With the sensor being properly configured, now we can test the remote features. A simple
way of testing this is by configuring soft limits and checking to make sure those soft limits
are upheld by the controller
First, we configure the soft limits on the motor controller so that they’re enabled and have
values for the forward and reverse limits

Then, we drive themotor to one of the limits. It will probably overshoot a bit, but the important
piece is that the motor controller’s output is neutral after hitting the soft limit, which we can
check in the Self-test Snapshot and looking at the faults.

2.21.6 Next Steps

Now that the remote sensor is configured, it can be used for Motor Controller Closed Loop
or Bring Up: Differential Sensors.

156 Chapter 2. Follow these instructions in order!

Phoenix

2.22 Bring Up: Differential Sensors

This section is dedicated to validating differential sensors for any CTRE motor controller.
Generally a differential sensor is necessary for:
• Closed-Loop control modes (Position, MotionMagic, Velocity, MotionProfile) when the
mechanism has more than one sensor attached.

• Auxiliary Closed-Loop control modes (MotionProfileArc, and all other Closed-Loop con-
trol modes) for mechanisms that require a differential component (Such as an elevator
where the two sides are not linked mechanically, or a drive train).

2.22.1 Bring up Sensors as Remote/Local sensors

In order to use differential sensors, you must bring up all relevant sensors on their local
controller devices.
See relevant BringUp sections below:
• Initial Hardware Testing
• Bring Up: CAN Bus
• Bring Up: PCM
• Bring Up: PDP
• Bring Up: Pigeon IMU
• Bring Up: CANifier
• Bring Up: Talon FX/SRX and Victor SPX
• Bring Up: Talon FX/SRX Sensors

After each sensor is brought up on its local device, all remote sensors should be configured
as a remote filter on the master device. See Bring Up: Remote Sensors.

2.22.2 Configure sensors as Sum/Diff terms

Once the sensors are brought up and checked, we can move on to configuring them as the
sum difference (diff) terms.
The sum of two sensors is used primarily to calculate the overall movement of the mechanism.
For example, in the case of a differential lift the sum of two sensors is used to calculate the
height of the lift.

Tip: When using the sum of two sensors for total movement, you can also set the Feedback
Coefficient to 0.5 on order to scale the value back to the original units.

The difference of two sensors, however, is mostly used to calculate the differential portion of
the mechanism. For example, for a differential lift the difference represents how level the lift
is.
The sum and diff terms will almost always be the same sensors, and will almost always be a
local sensor and a remote sensor (or two remote sensors).

2.22. Bring Up: Differential Sensors 157

Phoenix

/* Below shows setting the member variables of a motor controller Config object. */
/* Remote Sensor 0 is the other talon's quadrature encoder */
remoteFilter0.remoteSensorSource = RemoteSensorSource::RemoteSensorSource_TalonSRX_
↪→SelectedSensor;
remoteFilter0.remoteSensorDeviceID = otherTalon->GetDeviceID();

/* Configure sensor sum to be this quad encoder and the other talon's encoder */
sum0Term = FeedbackDevice::QuadEncoder;
sum1Term = FeedbackDevice::RemoteSensor0;

2.22.3 Auxiliary PID Polarity

The Auxiliary PID Polarity flag configures whether the master motor controller uses the ad-
dition of the two PID’s and the auxiliary follower uses the subtraction, or if the master uses
the subtraction and the auxiliary follower uses the addition.
Setting this to false will cause the master/follower pair to behave like this:

• Master Motor Controller Output = PID[0] + PID[1]
• Auxiliary Follower Output = PID[0] - PID[1]

Setting this to true will cause the master/follower pair to behave like this:
• Master Motor Controller Output = PID[0] - PID[1]
• Auxiliary Follower Output = PID[0] + PID[1]

2.22.4 Using the differential sensor setup

This is covered in Motor Controller Closed Loop

2.23 WPI/NI Software Integration

The stock software frameworks in the FRC control system has several features used by teams.
To leverage these features, the C++ /Java Phoenix API has six additional classes:
• WPI_TalonFX
• WPI_TalonSRX
• WPI_VictorSPX
• WPI_CANCoder

158 Chapter 2. Follow these instructions in order!

Phoenix

• WPI_PigeonIMU
• WPI_Pigeon2

The first three are wrappers for the Talon FX/SRX and Victor SPX, that provide:
• LiveWindow support
• Motor Safety features
• Compatibility with DriveTrain classes

All six classes also provide support for the WPILib simulation GUI.

2.23.1 C++ / Java Drive Train classes

To leverage the Drive Train classes in WPILib:
• Create your motor controller objects like normal.
• Create the Drive object like normal.
• Call setRightSideInverted(false) so that when moving forward, positive output is applied
to left and right.

• Adjust setInverted() so that motors cause robot to drive straight forward when stick is
forward.

package frc.robot;

import com.ctre.phoenix.motorcontrol.can.*;
import edu.wpi.first.wpilibj.*;
import edu.wpi.first.wpilibj.drive.*;

public class Robot extends TimedRobot {
WPI_TalonSRX _talonL = new WPI_TalonSRX(1);
WPI_TalonSRX _talonR = new WPI_TalonSRX(0);
DifferentialDrive _drive = new DifferentialDrive(_talonL, _talonR);
Joystick _joystick = new Joystick(0);

@Override
public void teleopInit() {

/* factory default values */
_talonL.configFactoryDefault();
_talonR.configFactoryDefault();

/* flip values so robot moves forward when stick-forward/LEDs-green */
_talonL.setInverted(false); // <<<<<< Adjust this
_talonR.setInverted(true); // <<<<<< Adjust this

/*
* WPI drivetrain classes defaultly assume left and right are opposite. call
* this so we can apply + to both sides when moving forward. DO NOT CHANGE
*/
_drive.setRightSideInverted(false);

}

@Override
public void teleopPeriodic() {

double xSpeed = _joystick.getRawAxis(1) * -1; // make forward stick positive
(continues on next page)

2.23. WPI/NI Software Integration 159

Phoenix

(continued from previous page)
double zRotation = _joystick.getRawAxis(2); // WPI Drivetrain uses positive=>␣

↪→right

_drive.arcadeDrive(xSpeed, zRotation);

/* hold down btn1 to print stick values */
if (_joystick.getRawButton(1)) {
System.out.println("xSpeed:" + xSpeed + " zRotation:" + zRotation);

}
}

}

Tip: It is advantageous to setup Talon / Victors in this fashion so that positive (green) repre-
sents forward motion. This makes integrating the other control modes into your drive train
simpler.

2.23.2 C++ / Java Motor Safety Feature

The Java classes WPI_TalonFX, WPI_TalonSRX, and WPI_VictorSPX all implement the motor
safety interface.
The C++ classes WPI_TalonFX, WPI_TalonSRX, andWPI_VictorSPX do not inherent the motor
safety abstract class, but they do implement the exact same routines. This means the same
routines can be called on the Phoenix WPI objects.

2.24 Simulation

2.24.1 Supported Devices

Currently, the following devices are supported in simulation:
• Talon SRX
• Talon FX
• Victor SPX
• CANCoder
• Pigeon IMU
• Pigeon 2.0

Warning: Multiple CAN buses using the CANivore API is not supported at this time. All
CAN devices will appear on the same CAN bus. If you wish to run your robot code in
simulation, ensure devices have unique IDs across CAN buses.

160 Chapter 2. Follow these instructions in order!

https://store.ctr-electronics.com/canivore

Phoenix

2.24.2 Simulation API

Each supported device has a SimCollection object to manage I/O with the simulation model.
The object can be retrieved by calling getSimCollection() on an instance of a device.

TalonFX fx = new TalonFX(0);
TalonFXSimCollection fx_sim = fx.getSimCollection();

Tip: For example usage of the SimCollection API, check out our examples that support
simulation, such as our differential drive simulation example.

Note: Simulating non-FRC applications (not using WPI_* classes) will require calling
Unmanaged.feedEnable(100); to enable simulated actuators.

Note: To view simulated devices in the WPILib simulation GUI, use the WPI_* class exten-
sions.

2.24.3 Simulating Sensors

CTRE device simulation reflects what the physical device would see in normal hardware op-
eration. This does not always reflect the behavior of our regular device APIs.
As an example, when setInverted(true) is called on a motor controller, the following values
are all inverted in the regular device API:
• input to set()
• output of getMotorOutputPercent()
• output of getMotorOutputVoltage()
• input to setSelectedSensorPosition()
• output of getSelectedSensor*()

However, the SimCollection I/O represents what the physical motor controller sees. For ex-
ample, getMotorOutputLeadVoltage() returns the voltage you would read across the motor
output leads with a voltmeter. If the motor is inverted, the voltage measured will be inverted
from what is seen in the regular device API.
Therefore, in the SimCollection API, none of the following values will be inverted:
• output of SimCollection.getMotorOutputLeadVoltage()
• input to SimCollection.set*Position()
• input to SimCollection.add(Quadrature/IntegratedSensor)Position()
• input to SimCollection.set*Velocity()

It is important to take this into account to avoid unexpected behavior. For example, us-
ing the output of getMotorOutputVoltage() to determine the input of SimCollection.
set*Velocity() will result in the sensor values being inverted in the API. However, using
the output of SimCollection.getMotorOutputLeadVoltage() will result in the expected be-
havior.

2.24. Simulation 161

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/blob/master/Java%20General/DifferentialDrive_Simulation/src/main/java/frc/robot/Robot.java

Phoenix

2.24.4 “Raw” Quadrature/Integrated Sensor Position

The quadrature sensor on the Talon SRX and the integrated sensor on the Talon FX have
a unique problem. Users can set the position of the sensor through the regular de-
vice API using setSelectedSensorPosition() and SensorCollection.set(Quadrature/
IntegratedSensor)Position(). However, the user simulation model does not know about
these calls. Our solution is to separate the encoder values seen in the regular device API
from the simulated encoder values. We call this separate simulated encoder position the
“raw” position.
When the raw position of the quadrature or integrated sensor is set in the SimCollection API,
the simulated device takes the difference between the new raw position and the previous raw
position. It then adds that difference to the actual sensor position reported to the user. As
a result, the user simulation model does not have to worry about user calls to setSelected-
SensorPosition().

2.25 Motor Controller Closed Loop

2.25.1 Primer on Closed-loop

Talon SRX and Victor SPX supports a variety of closed-loop modes including position closed-
loop, velocity closed-loop, Motion Profiling, and Motion Magic. Talon SRX additionally sup-
ports current closed-loop.

Note: All closed-loop modes update every 1ms (1000Hz) unless configured otherwise.

Tip: While tuning the closed-loop, use the Tuner configuration tab to quickly change the
gains “on the fly”. Once the PID is stable, set the gain values in code so that Talons can be
swapped/replaced easily.

Regardless of which closed-loop control mode is used, the following statements apply:
• Current limit and voltage compensation selections are honored (just like in open-loop
PercentOutput mode)

• “Ramping” can be configured using configClosedloopRamp (routine or VI)
• All other open-loop features are honored during closed loop (neutral mode, peaks, nom-
inal outputs, etc.).

• Closed Loop controller will pull closed-loop gain/setting information from a selected slot.
There are four slots to choose from (for gain-scheduling).

• PIDF controller takes in target and sensor position measurements in “raw” sensor units.
This means a CTRE Mag Encoder will count 4096 units per rotation.

• PIDF controller takes in target and sensor velocity measurements in “raw” sensor units
per 100ms.

• PIDF controller calculates the motor output such that, 1023 is interpreted as “full”. This
means a closed loop error of 341 (sensor units) X kP of 3.0 will produce full motor output
(1023).

162 Chapter 2. Follow these instructions in order!

Phoenix

Warning: Although the velocity kF config of the Talon-SRX/Victor-SPX assumes 1023
is full output, do not confuse this with the arbitrary feed-forward parameter of the Set
routine/VI, which accepts a value within [-1,+1]

Below are descriptions for the various control modes.

Closed-Loop Control Modes

Position Closed-Loop Control Mode

The Position Closed-Loop control mode can be used to abruptly servo to and maintain a target
position.
A simple strategy for setting up a closed loop is to zero out all Closed-Loop Control Parameters
and start with the Proportional Gain.
For example if you want your mechanism to drive 50% throttle when the error is 4096 (one
rotation when using CTRE Mag Encoder), then the calculated Proportional Gain would be
(0.50 X 1023) / 4096 = ~0.125.
Tune this until the sensed value is close to the target under typical load. Many prefer to
simply double the P-gain until oscillations occur, then reduce accordingly.
If the mechanism accelerates too abruptly, Derivative Gain can be used to smooth the motion.
Typically start with 10x to 100x of your current Proportional Gain. If application requires a
controlled (smooth) deceleration towards the target, we strongly recommend motion-magic.
If the mechanism never quite reaches the target and increasing Integral Gain is viable, start
with 1/100th of the Proportional Gain.

Current Closed-Loop Control Mode

The Talon’s Closed-Loop logic can be used to approach a target current-draw. Target and
sampled current is passed into the PIDF controller in milliamperes. However the robot API
expresses the target current in amperes.

Note: Current Control Mode is separate from Current Limit.

Tip: A simple strategy for setting up a current-draw closed loop is to zero out all Closed-Loop
Control Parameters and start with the Feed-Forward Gain. Tune this until the current-draw
is close to the target under typical load. Then start increasing P gain so that the closed-loop
will make up for the remaining error.

Warning: This feature is not available on Victor SPX.

2.25. Motor Controller Closed Loop 163

Phoenix

Velocity Closed-Loop Control Mode

The Talon’s Closed-Loop logic can be used to maintain a target velocity. Target and sampled
velocity is passed into the equation in native sensor units per 100ms.

Tip: A simple strategy for setting up a closed loop is to zero out all Closed-Loop Control
Parameters and start with the Feed-Forward Gain. Tune this until the sensed value is close to
the target under typical load. Then start increasing P gain so that the closed-loop will make
up for the remaining error.

Tip: Velocity Closed-Loop tuning is similar to Current Closed-Loop tuning in their use of feed-
forward. Begin by measuring the sensor velocity while driving the Talon at a large throttle.

Motion Magic Control Mode

Motion Magic is a control mode for Talon SRX that provides the benefits of Motion Profil-
ing without needing to generate motion profile trajectory points. When using Motion Magic,
Talon SRX / Victor SPX will move to a set target position using a motion profile, while honor-
ing the user specified acceleration, maximum velocity (cruise velocity), and optional S-Curve
smoothing.

Tip: MotionMagic in firmware >= 4.17 (Talon SRX and Victor SPX) now supports an S-Curve
parameter, allowing you to create a continuous velocity profile.

The benefits of this control mode over “simple” PID position closed-looping are:
• Control of the mechanism throughout the entire motion (as opposed to racing to the end
target position).

• Control of the mechanism’s inertia to ensure smooth transitions between set points.
• Improved repeatability despite changes in battery voltage.
• Improved repeatability despite changes in motor load.

After gain/settings are determined, the robot-application only needs to periodically set the
target position.
There is no general requirement to “wait for the profile to finish”, however the robot applica-
tion can poll the sensor position and determine when the motion is finished if need be.
Motion Magic functions by generating a trapezoidal/S-Curve velocity profile that does not
exceed the specified acceleration or cruise velocity. This is done automatically as the Talon
SRX / Victor SPX determines on-the-fly when to modify its velocity to accomplish this.

Note: If the remaining sensor distance to travel is small, the velocity may not reach cruise
velocity as this would overshoot the target position. This is often referred to as a “triangle
profile”.

164 Chapter 2. Follow these instructions in order!

Phoenix

If the S-Curve strength [0,8] is set to a nonzero value, the generated velocity profile is no
longer trapezoidal, but instead is continuous (corner points are smoothed).
An S-Curve profile has the following advantages over a trapezoidal profile:
• Control over the Jerk of the mechanism.
• Reducing oscillation of the mechanism.
• Maneuver is more deliberate and reproducible.

Tip: The S-Curve feature, by its nature, will increase the amount of time a movement re-
quires. This can be compensated for by decreasing the configured acceleration value.

2.25. Motor Controller Closed Loop 165

Phoenix

Motion Magic utilizes the same PIDF parameters as Motion Profiling.
Three additional parameters need to be set in the Talon SRX– Acceleration, Cruise Velocity,
and Acceleration Smoothing.
The Acceleration parameter controls acceleration and deacceleration rates during the begin-
ning and end of the trapezoidal motion. The Cruise Velocity parameter controls the cruising
(peak) velocity of the motion. The Acceleration smoothing parameter controls the “curve” of
the velocity, a larger smoothing value will result in greater dampening of the acceleration.

Motion Profile Control Mode

Talon SRX and Victor SPX support other closed-loop modes that allow a “Robot Controller”
to specify/select a target value to meet. The target can simply be the percent output motor
drive, or a target current-draw. When used with a feedback sensor, the robot controller may
also simply set the target position, or velocity to servo/maintain.
However, for advanced motion profiling, the Talon SRX / Victor SPX additionally supports a
mode whereby the robot controller can stream a sequence of trajectory points to express an
entire motion profile.
Each trajectory point holds the desired velocity, position, arbitrary feedforward, and time
duration to honor said point until moving on to the next point. The point also holds targets
for both the primary and auxiliary PID controller, allowing for differential control (drivetrain,
differential mechanisms).
Alternatively, the trajectory points can be streamed into the motor controller as the motor
controller is executing the profile, so long as the robot controller sends the trajectory points
faster than the Talon consumes them. This also means that there is no practical limit to how
long a profile can be.

Tip: Starting in 2019, the Talon and Victor will linearly interpolate targets between two
buffer points every 1ms. This means you can send points with larger time durations, but still
have a smooth continuous motion. This features default on.

What is the benefit? Leveraging the Motion Profile Control Mode in the Talon SRX has the
following benefits:
• Direct control of the mechanism throughout the entire motion (as opposed to a single
PID closed-loop which directly servos to the end target position).

• Accurate scheduling of the trajectory points that is not affected by the performance of
the primary robot controller.

• Improved repeatability despite changes in battery voltage.
• Improved repeatability despite changes in motor load.
• Provides a method to synchronously gain-schedule.

Additionally, this mode could be used to schedule several position servos in advance with
precise time outs. For example, one could map out a collection of positions and timeouts,
then stream the array to the Talon SRX to execute them.

166 Chapter 2. Follow these instructions in order!

Phoenix

Motion Profile Arc Control Mode

Motion Profile Arc utilizes the Auxiliary Closed Loop features to profile the motion of not just
one degree of freedom, but of two.
In the example of trying to profile the movement of the robot on a field, the primary PID can
be used to ensure the robot is a specified distance (sum or average of both sides), and at
the same time the Auxiliary PID can be used to ensure the robot is facing the right direction
(difference of both sides or heading from a pigeon), allowing the robot to follow a spline.
The benefits of this are the same as for the Motion Profile control mode, and at the same time
expands on the possibilities this can be used for.

Auxiliary Closed Loop PID[1]

Along with the above control modes, the Talon SRX / Victor SPX has the ability to run a second
PID loop, called the auxiliary PID[1] loop. This is typically used in differential mechanisms
where application must maintain two process variables (e.g. sum/average of two sensors,
along with the difference or IMU heading).
When used, the motor controller will simultaneously calculate: - PID[0] + PID[1] (this is
applied to the motor output) - PID[0] - PID[1] (this is sent to a follower)

Note: The follower Talon / Victor must have a followType of AuxOutput1. Use the follow
routine/VI to accomplish this.

Note: The signage of the PID[1] term can be modified allowing the master Talon to subtract
the term instead of adding it.

Note: In order to use Auxiliary Closed Loop, a remote sensor will need to have been config-
ured for PID[0] or PID[1]. Look at Bring Up: Remote Sensors to see how to do this

Note: The Control Mode of Auxiliary Closed Loop is always position closed-loop.

Some example setups are provided below, with a step-by-step walkthrough provided after the
PID tuning sections. See Auxiliary Closed Loop PID[1] Walkthrough.

Example 1 - Differential Drivetrain

Consider the application of controlling the position of a drive train with Position Control Mode,
given an encoder on the left and right side.
PID[0] will use the sum (or average if sensor coefficient is set to 0.5) of the left and right
sensor to produce the traveled robot distance. Given a target distance, the PID[0] output will
move the robot closer to the target distance. PID[1] will use the difference between the left
and right sensor to produce the robot heading. Alternatively the Pigeon IMU can be used to
remotely provide this. The PID[1] output will then maintain the robot’s heading throughout
the maneuver.

2.25. Motor Controller Closed Loop 167

Phoenix

Note: If Velocity control mode is used, the aux PID[1] loop still uses the position value
of its respective sensor source. This is convenient for controlling the robot-velocity while
maintaining robot-heading.

Note: When using the Motion Magic control mode, the target for PID[1] is smoothed iden-
tically to PID[0], and both targets should be reached at approximately the same time.

Note: Sensor difference (and not sum) may represent the distance traveled depending on
the signage of the sensors involved.

Example 2 - Lift Mechanism

Consider a lifting mechanism composed of two closed-loops (one for each side) and no me-
chanical linkage between them. In other words, the left and right side each have a unique
motor controller and sensor. The goal in this circumstance is to closed-loop the elevation
while keeping the left and right side reasonably synchronized.
This can be accomplished by using the sum of each side as the elevator height, and the dif-
ference as the level deviation between the left and right, which must be kept near zero.
Aux PID[1] can then be used to apply a corrective difference component (adding to one side
and subtracting from the other) to maintain a synchronous left and right position, while em-
ploying Position/Velocity/Motion-Magic to the primary axis of control (the elevator height).

2.25.2 Sensor Preparation

Before invoking any of the closed loop modes, the following must be done:
• Complete the sensor bring up procedure to ensure sensor phase and general health.
• Record the maximum sensor velocity (position units per 100ms) at 100% motor output.
• Calculate an Arbitrary Feed Forward if necessary (gravity compensation, custom system
characterization).

• Calculating Velocity Feed-Forward (kF) gain if applicable (Velocity Closed Loop, Motion
Profile, Motion Magic).

The first two are covered in section “Confirm Sensor Resolution/Velocity”. Calculating feed
forward is done in the next section.

168 Chapter 2. Follow these instructions in order!

Phoenix

2.25.3 Arbitrary Feed Forward

The Arbitrary Feed Forward is a strategy for adding any arbitrary values to the motor output
regardless of control mode. It can be used for gravity compensation, custom velocity and
acceleration feed forwards, static offsets, and any other term desired.

Note: When setting and tuning closed-loop gains, Arbitrary Feed Forward should be set first,
before any other values. The Arbitrary Feed Forward will change the relationship between
your closed-loop gains and the output of your system, and thus result in different gains needed
for a well-tuned mechanism.

Note: Unlike other closed-loop gains, the Arbitrary Feed Forward is passed in as an ad-
ditional set() parameter instead of as a persistent configuration parameter. This is because
typical use-cases for Arbitrary Feed Forward frequently change the value dynamically.

Warning: Arbitrary Feed Forward and Auxiliary Closed Loop cannot be used simultane-
ously except when using Motion Profile Arc.

Do I need to use Arbitrary Feed Forward?

We recommend using Arbitrary Feed Forward in any of the following scenarios:
• A mechanism affected by gravity (elevator, arm, etc.).
• Custom system characterization (such as acceleration feed forward).
• Any scenario requiring a static offset.

Note: Units for the arbitrary feedforward term are [-1,+1].

Setting Arbitrary Feed Forward

Arbitrary Feed Forward is passed as an optional parameter in a set() call or VI. The value
must be set on every call, just like the primary set value.
Example code:

_motorcontroller.set(ControlMode.MotionMagic, targetPos, DemandType.
↪→ArbitraryFeedForward, feedforward);

LabVIEW snippet (drag and drop):

2.25. Motor Controller Closed Loop 169

Phoenix

Common Feed Forward Uses/Calculations

Below are some common uses and calculations for Arbitrary Feed Forward.

Gravity Offset (Elevator)

In the case of a traditional elevator mechanism, there is a constant force due to gravity af-
fecting the mechanism. Because the force is constant, we can determine a constant offset to
keep the elevator at position when error is zero.
Use either the Phoenix Tuner Control Tab or Joystick control in your robot code to apply
output to the elevator until it stays at a position without moving. Use Phoenix Tuner (plotter
or Self-test Snapshot) to measure the output value - this is the Arbitrary Feed Forward value
needed to offset gravity.
If we measure a motor output of 7% to keep position, then our java code for Arbitrary Feed
Forward with Motion Magic would look like this:

double feedforward = 0.07;
_motorcontroller.set(ControlMode.MotionMagic, targetPos, DemandType.
↪→ArbitraryFeedForward, feedforward);

Tip: If your elevator mechanism will change weight while in use (i.e. pick up a heavy game
piece), it is helpful to measure gravity offsets at each expected weight and switch between
Arbitrary Feed Forward values as needed.

Gravity Offset (Arm)

In the case of an arm mechanism, the force due to gravity will change as the arm moves
through its range of motion. In order to compensate for this, we will need to measure a
gravity offset at the highest force (arm at horizontal position) and then scale the value with
trigonometry.
To start, use either the Phoenix Tuner Control Tab or Joystick control in your robot code to
apply output to the arm until it stays at the horizontal position without moving. Use Phoenix
Tuner (plotter or Self-test Snapshot) to measure the output value - this is the base component
of our Arbitrary Feed Forward value.
For scaling the value, the cosine term of trigonometry matches the scaling we need for our
rotating arm. The cosine term is at maximum value (+1) when at horizontal (0 degrees or
radians) and is at 0 when the arm is vertical (90 degrees or pi/2 radians). To use this cosine

170 Chapter 2. Follow these instructions in order!

https://en.wikipedia.org/wiki/Trigonometry

Phoenix

value as a scalar, we will need to determine our current angle. This requires knowing the
current arm position and number of position ticks per degree, then converting to units of
radians.

Note: Trigonometry uses 0 for the angle at horizontal. To account for this, we need to
subtract the measured horizontal position value before we calculate our angle. This means
we will have a positive angle above horizontal and a negative angle below horizontal.

Warning: The java cosine function requires units to be in radians.

int kMeasuredPosHorizontal = 840; //Position measured when arm is horizontal
double kTicksPerDegree = 4096 / 360; //Sensor is 1:1 with arm rotation
int currentPos = _motorcontroller.getSelectedSensorPosition();
double degrees = (currenPos - kMeasuredPosHorizontal) / kTicksPerDegree;
double radians = java.lang.Math.toRadians(degrees);
double cosineScalar = java.lang.Math.cos(radians);

double maxGravityFF = 0.07;
_motorcontroller.set(ControlMode.MotionMagic, targetPos, DemandType.
↪→ArbitraryFeedForward, maxGravityFF * cosineScalar);

2.25.4 Calculating Velocity Feed Forward gain (kF)

A typical strategy for estimating the necessary motor output is to take the target velocity
and multiplying by a tuned/calculated scalar. More advanced feed forward methods (gravity
compensation, custom velocity and acceleration feed forwards, static offsets, etc.) can be
done with the arbitrary feed forward features from the previous section..

Note: The velocity feed forward (kF) is different from the Arbitrary Feed Forward in that it
is a specialized feed forward designed to approximate the needed motor output to achieve a
specified velocity.

Do I need to calculate kF?

If using any of the control modes, we recommend calculating the kF:
• Velocity Closed Loop: kF is multiplied by target velocity and added to output.
• Current (Draw) Closed Loop: kF is multiplied by the target current-draw and added to
output.

• MotionMagic/ MotionProfile / MotionProfileArc: kF is multiplied by the runtime-
calculated target and added to output.

Note: When using position closed loop, it is generally desired to use a kF of ‘0’. During this
mode target position is multiplied by kF and added tomotor output. If providing a feedforward

2.25. Motor Controller Closed Loop 171

Phoenix

is necessary, we recommend using the arbitrary feed forward term (4 param Set) to better
implement this.

How to calculate kF

Using Tuner (Self-test Snapshot or Plotter), we’ve measured a peak velocity of 9326 native
units per 100ms at 100% output. This can also be retrieved using getSelectedSensorVelocity
(routine or VI).
However, many mechanical systems and motors are not perfectly linear (though they are
close). To account for this, we should calculate our feed forward using a measured velocity
around the percent output we will usually run the motor.
For our mechanism, we will typically be running the motor ~75% output. We then use Tuner
(Self-test Snapshot or Plotter) to measure our velocity - in this case, we measure a velocity of
7112 native units per 100ms.
Now let’s calculate a Feed-forward gain so that 75% motor output is calculated when the
requested speed is 7112 native units per 100ms.
F-gain = (75% X 1023) / 7112 F-gain = 0.1079
Let’s check our math, if the target speed is 7112 native units per 100ms, Closed-loop output
will be (0.1079 X 7112) => 767.38 (75% of full forward).

Note: The output of the PIDF controller in Talon/Victor uses 1023 as the “full output”.

Note: The kF feature and arbitrary feed-forward feature are not the same. Arbitrary feed-
forward is a supplemental term [-1,1] the robot application can provide to add to the output
via the set() routine/VI.

2.25.5 Motion Magic / Position / Velocity / Current Closed Loop Closed
Loop

Closed-looping the position/velocity value of a sensor is explained in this section. This section
also applies to the current (draw) closed loop mode.
Relevant source examples can be found at:
• https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages
• https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW

The general steps are:
• Selecting the sensor type (see previous Bring-Up sections)
• Confirm motor and sensor health (see previous Bring-Up section on sensor)
• Confirm sensor phase (see previous Bring-Up sections)
• Collect max sensor velocity information (see calculating kF section)
• Bring up plotting interface so you can visually see sensor position and motor output.
This can be done via Tuner Plotter, or through LabVIEW/SmartDash/API plotting.

172 Chapter 2. Follow these instructions in order!

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW

Phoenix

• Configure gains and closed-loop centric configs.

Note: If you are using current closed-loop, than a sensor is not necessary.

Note: Current closed loop is not available on Victor SPX, it is only available on Talon SRX.

Once these previous checks are done, continue down to the gain instructions.

Note: This assumes all previous steps have been followed correctly.

1. Checkout the relevant example from CTREs GitHub.
2. Set all of your gains to zero. Use either API or Phoenix Tuner.
3. If not using Position-Closed loop mode, set the kF to your calculated value (see previous
section).

4. If using Motion Magic, set your initial cruise velocity and acceleration (section below).
5. Deploy the application and use the joystick to adjust your target. Normally this requires
holding down a button on the gamepad (to enter closed loop mode).

6. Plot the sensor-position to assess how well it is tracking. This can be done with WPI
plotting features, or with Phoenix Tuner.

In this example the mechanism is the left-side of a robot’s drivetrain. The robot is elevated
such that the wheels spin free. In the capture below we see the sensor position/velocity (blue)
and the Active Trajectory position/velocity (brown/orange). At the end of the movement the
closed-loop error (which is in raw units) is sitting at ~1400.units. Given the resolution of
the sensor this is approximately 0.34 rotations (4096 units per rotation). Another note is
that when the movement is finished, you can freely back-drive the mechanism without motor-
response (because PID gains are zero).

2.25. Motor Controller Closed Loop 173

Phoenix

Setting Motion Magic Cruise Velocity And Acceleration

The recommended way to do this is to take your max sensor velocity (previous section).
Suppose your kMaxSensorVelocity is 9326 units per 100ms. A reasonable initial cruise ve-
locity may be half of this velocity, which is 4663.
Config 4663 to be the cruiseVelocity via configMotionCruiseVelocity routine/VI.
Next lets set the acceleration, which is in velocity units per second (where velocity units =
change in sensor per 100ms). This means that if we choose the same value of 4663 for our
acceleration, than Motion Magic will ensure it takes one full second to reach peak cruise
velocity.
In short set the acceleration to be the same 4663 value via configMotionAcceleration rou-
tine/VI.
Later you can increase these values based on the application requirements.

174 Chapter 2. Follow these instructions in order!

Phoenix

Dialing kP

Next we will add in P-gain so that the closed-loop can react to error. In the previous section,
after running the mechanism with just F-gain, the servo appears to settle with an error or
~1400.
Given an error of (~1400.), suppose we want to respond with another 10% of throttle. Then
our starting kP would be….
(10% X 1023) / (1400) = 0.0731 Now let’s check our math, if the Talon SRX sees an error of
1400 the P-term will be 1400 X 0.0731= 102 (which is about 10% of 1023) kP = 0.0731

Apply the P -gain programmatically using your preferred method. Now retest to
see how well the closed-loop responds to varying loads.

Retest the maneuver by holding button 1 and sweeping the gamepad stick. At the end of
this capture, the wheels were hand-spun to demonstrate how aggressive the position servo
responds. Because the wheel still back-drives considerably before motor holds position, the
P-gain still needs to be increased.

Double the P-gain until the system oscillates (by a small amount) or until the system responds
adequately.
After a few rounds the P gain is at 0.6.
Scope captures below show the sensor position and target position follows visually, but back-
driving the motor still shows a minimal motor response.
After several rounds, we’ve landed on a P gain value of 3. The mechanism overshoots a bit at
the end of the maneuver. Additionally, back-driving the wheel is very difficult as the motor-
response is immediate (good).

2.25. Motor Controller Closed Loop 175

Phoenix

Once settles, the motor is back-driven to assess how firm the motor holds position.
The wheel is held by the motor firmly.

176 Chapter 2. Follow these instructions in order!

Phoenix

Dialing kD

To resolve the overshoot at the end of themaneuver, D-gain is added. D-gain can start typically
at 10 X P-gain.
With this change the visual overshoot of the wheel is gone. The plots also reveal reduced
overshoot at the end of the maneuver.

Dialing kI

Typically, the final step is to confirm the sensor settles very close to the target position. If the
final closed-loop error is not quite close enough to zero, consider adding I-gain and I-zone to
ensure the Closed-Loop Error ultimately lands at zero (or close enough).
In testing the closed-loop error settles around 20 units, so we’ll set the Izone to 50 units (large
enough to cover the typical error), and start the I-gain at something small (0.001).
Keep doubling I-gain until the error reliably settles to zero.
With some tweaking, we find an I-gain that ensures maneuver settles with an error of 0.

2.25. Motor Controller Closed Loop 177

Phoenix

If using Motion Magic, the acceleration and cruise-velocity can be modified to hasten/dampen
the maneuver as the application requires.

2.25.6 Auxiliary Closed Loop PID[1] Walkthrough

The auxiliary closed loop can be used to provide a differential output component to a multi
motor controller system. See Auxiliary Closed Loop PID[1] for an explanation of the Auxiliary
Closed Loop feature - below is a step-by-step walkthrough.

Tip: Be sure to look at the examples that are provided. Any example that has Auxiliary in
the name or is named “RemoteClosedLoop” makes use of these features.
Examples can be found here: https://github.com/CrossTheRoadElec/
Phoenix-Examples-Languages
We strongly encourage using the examples first, then only implementing PID[1] in your robot
code once comfortable with the examples.

As an example, we will use a differential drive train with 2 encoders on each side and a pigeon.
1. Decide which side’s master motor controller is the ultimate master, i.e. the
Talon/Victor that will calculate both the linear (PID0) and turn (PID1) compo-
nent. This example will use the right side as the ultimate master side.

2. Configure all remaining motor controllers on the right side to follow the ulti-
mate master motor controller.

3. Configure all motor controllers on the left side to auxiliary follow the master
motor controller

178 Chapter 2. Follow these instructions in order!

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages

Phoenix

Note: Alternatively, you can configure one motor controller on the left
side to auxiliary follow the master motor controller, and the remaining to
follow the auxiliary follower. Note this will introduce additional lag (typi-
cally 10ms).

Example below on how to follow the ultimate master.

_follower.follow(_ultimateMasterTalon, FollowerType.AuxOutput1); //␣
↪→follower will apply PID[0] - PID[1] while master applies PID[0] +␣
↪→PID[1], or vice versa

4. Configure PID[0] of the ultimate master motor controller. The example will use
the sensor sum of the local encoder and of the other side’s encoder.
• This requires having Sum0 Term configured to use the local encoder
and Sum1 Term configured to use a RemoteFilter0.

Note: RemoteFilter 0 or 1 has to be configured to capture the other side’s
encoder using either a RemoteSRX or CANifier.

See Bring Up: Differential Sensors for information on bringing up the sen-
sors for differential setups.

5. Configure PID[1] of the ultimate master motor controller. The example will use
RemoteSensor1 configured to capture the Pigeon’s Yaw value.
See Bring Up: Differential Sensors for information on bringing up the sen-
sors for differential setups, and Bring Up: Remote Sensors for bringing up
Pigeon IMU as a remote sensor.

6. Determine if the master controller should use the output of PID[0] + PID[1] or
if it should use PID[0] - PID[1]. This will depend on the polarity of the sensors,
which side of the drivetrain is the ultimate master, and the desired corrective
motion.
The auxiliary follower will use whichever sign the master does not use in
order to control the differential.

7. When closed-looping the drive train, utilize the 4 parameter set method, speci-
fying a setpoint for the sum of the encoders and a setpoint for the Pigeon IMU
yaw.

_rightMaster.set(ControlMode.Position, forward, DemandType.AuxPID, _
↪→targetAngle); // _targetAngle is in Pigeon units, 8192 units per␣
↪→360'

LabVIEW snippet below that uses 4 param set.

2.25. Motor Controller Closed Loop 179

Phoenix

8. Tune the PID for both the primary and auxiliary PID using the above methods.

Tip: Primary and Auxiliary PID can initially be tuned independently to simplify the tuning
process. Tune the primary PID gains while keeping the Auxiliary target constant, then tune
the auxiliary PID gains while keeping the primary target constant (ie. using zero-turn move-
ment). The primary and auxiliary gain sets can then be further tuned when executing motion
using both PID loops simultaneously.

2.25.7 Motion Profiling Closed Loop

The above guide shows how to dial PID gains for all closed looping, this guide will talk about
how to utilize Motion Profiling using a BufferedStream object.

Note: It is strongly recommended to use theMotionProfiling example first to become familiar
with Motion Profiling, and only after having used the example should you try to implement it
in your own robot code

Tip: The Buffered stream object is a new object introduced in 2019 designed to make motion
profiling easier than ever. The legacy API and the examples that use it are still available.

Create a motion profile

Using Excel or a path generating program, you need to create a series of points that specify
the target position, velocity, and the time to the next point. If you are using an example,
there is an excel sheet inside the example folder that does this for you named Motion Profile
Generator. Use this to get started on creating motion profiles.

180 Chapter 2. Follow these instructions in order!

Phoenix

Upload it to the robot

This can be done either by copy-pasting all the points into the robot application as an array or
by copy-pasting the file onto the Robot Controller and using a File operation to read it. The
Java/C++ examples show copy-pasting the points into an array, and the excel document we
provide has a page that automatically generates the array for you to copy paste.

public static double [][]Points = new double[][]{
{0, 0 ,25},
{0.000347222222222222, 1.666666667 ,25},
{0.0015625, 4.166666667 ,25},
{0.00399305555555556, 7.5 ,25},
.
.
.
{9.99756944444445, 5 ,25},
{9.99913194444445, 2.5 ,25},
{9.99982638888889, 0.833333333 ,25},
{10, 0 ,25}

};

LabVIEW, on the other hand, uses the file operations to read a csv file and feed the points
read from it into an array.

2.25. Motor Controller Closed Loop 181

Phoenix

Tip: Drag and drop the image above into your Begin.vi block diagram

Note: The above image also has the next step,Write the points to a Buffered Stream included
in it

Write the points to a Buffered Stream

Now you need to write all the points onto a buffered stream object. This is done by calling the
Write method and passing a trajectory point that has the specified position and velocity into
the object. Be sure that the first point has zeroPos set to true if you wish to zero the position
at the start of the profile and that the last point has isLast set to true so the profile recognizes
when it’s done.
Java example:

/* Insert every point into buffer, no limit on size */
for (int i = 0; i < totalCnt; ++i) {

double direction = forward ? +1 : -1;
double positionRot = profile[i][0];
double velocityRPM = profile[i][1];
int durationMilliseconds = (int) profile[i][2];

/* for each point, fill our structure and pass it to API */
point.timeDur = durationMilliseconds;
point.position = direction * positionRot * Constants.kSensorUnitsPerRotation;␣

↪→ // Convert Revolutions to Units
point.velocity = direction * velocityRPM * Constants.kSensorUnitsPerRotation /

↪→ 600.0; // Convert RPM to Units/100ms
point.auxiliaryPos = 0;
point.auxiliaryVel = 0;
point.profileSlotSelect0 = Constants.kPrimaryPIDSlot; /* which set of gains␣

↪→would you like to use [0,3]? */
point.profileSlotSelect1 = 0; /* auxiliary PID [0,1], leave zero */

(continues on next page)

182 Chapter 2. Follow these instructions in order!

Phoenix

(continued from previous page)
point.zeroPos = (i == 0); /* set this to true on the first point */
point.isLastPoint = ((i + 1) == totalCnt); /* set this to true on the last␣

↪→point */
point.arbFeedFwd = 0; /* you can add a constant offset to add to PID[0]␣

↪→output here */

_bufferedStream.Write(point);
}

Call startMotionProfile

With the Buffered Stream object fully written to, call startMotionProfile and the motor con-
troller will begin executing once the specified number of points have been buffered into it.
Do not call Set after this, the motor controller will execute on its own.

Note: EnsureMotorSafety isDisabled. Using the new API withMotorSafety enabled causes
undefined behavior. If you wish to use MotorSafety with motion profiling, use the Legacy API.

Check isMotionProfileFinished

After having started the motion profile, you should check when the profile is done by polling
IsMotionProfileFinished until it returns true. Once it is true, you know the profile has reached
its last point and is complete, so you can move on to the next action.

if (_master.isMotionProfileFinished()) {
Instrum.printLine("MP finished");

}

2.25.8 Motion Profiling Arc Closed Loop

In addition to the motion profile mode, there is a similar control mode that integrates auxiliary
closed loop features. This is called Motion Profile Arc control mode, and utilizes everything
that’s been covered in the previous sections.
Below is a guide on how to get Motion Profiling Arc up and running, using the new Buffered
Stream API.

Note: This is also an example that is available on our examples repo

Note: The steps for using motion profile arc are very similar and reference the steps for
creating a normal motion profile. Read them first

Steps for using Motion Profile Arc:
1. Configure all the motor controllers to use the correct sensors

• This involves bringing up all the sensors on their respective CAN devices

2.25. Motor Controller Closed Loop 183

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages/tree/master/Java%20General/MotionProfileArc_Simple

Phoenix

• Bring Up: Remote Sensors
• Bring Up: Talon FX/SRX Sensors
• This also requires setting up remote sensors and auxiliary closed loops, as
detailed in the sections above

2. Create a motion profile. This is the most unique step from a normal motion profile
because it will integrate the auxiliary position variable in some way with the profile.
If you wish to just make sure the robot is driving straight, generate a normal profile
and zero the auxiliary position.

3. Upload the points to the robot. This is done the same way as for a normal motion
profile

4. Write the points to a Buffered Stream object. This is also done the same way, but
be sure to include the auxiliary position and auxiliary velocity points as well as
setting useAuxPID to true

5. Call startMotionProfile. Everything regarding normal motion profile is the same as
motion profile arc, except that you also need to pass ControlMode.MotionProfileArc
as the motion profile control mode

6. Wait until isMotionProfileFinished returns true. This is the same as a normal motion
profile.

2.25.9 Mechanism is Finished Command

Often it is necessary to move a mechanism to a setpoint and ensure that it has properly
reached its final position before moving on to the next command. A proper implementation
requires the following:
• waiting long enough to ensure CAN framing has provided fresh data. See setStatus-
FramePeriod() to modify update rates.

• waiting long enough to ensure mechanism has physically settled. Otherwise closed-loop
overshoot (due to inertia) will not be corrected.

Warning: If using Motion Magic control mode, robot code should additionally poll
getActiveTrajectoryPosition() routine/VI to determine when final target position has been
reached. This is because the closed-loop error corresponds how well the position profile
is tracking, not when profiled maneuver is complete.

The general requirements are to periodically monitor the closed-loop error provided the fol-
lowing:
• The latest closed-loop error (via API).
• The threshold that the closed-loop error must be within to be considered accept-
able.

• How long the closed-loop error has been acceptable.
• The threshold of how long the error must be acceptable before moving on to the next
command.

An example of this is shown below in Java, within a class that implements the Command
interface

184 Chapter 2. Follow these instructions in order!

Phoenix

int kErrThreshold = 10; // how many sensor units until its close-enough
int kLoopsToSettle = 10; // how many loops sensor must be close-enough
int _withinThresholdLoops = 0;

// Called repeatedly when this Command is scheduled to run
@Override
protected void execute() {

/* Check if closed loop error is within the threshld */
if (talon.getClosedLoopError() < +kErrThreshold &&

talon.getClosedLoopError() > -kErrThreshold) {

++_withinThresholdLoops;
} else {

_withinThresholdLoops = 0;
}

}

// Make this return true when this Command no longer needs to run execute()
@Override
protected boolean isFinished() {

return (_withinThresholdLoops > kLoopsToSettle);
}

Warning: If using Motion Magic control mode, robot code should additionally poll
getActiveTrajectoryPosition() routine/VI to determine when final target position has been
reached. This is because the closed-loop error corresponds how well the position profile
is tracking, not when profiled maneuver is complete.

2.25.10 Closed-Loop Configurations

The remaining closed-loop centric configs are listed below.

2.25. Motor Controller Closed Loop 185

Phoenix

General Closed-Loop Configs

Name Description
PID 0 Primary Feedback Sensor

Selects the sensor source for PID0 closed
loop, soft limits, and
value reporting for the SelectedSensor API.

PID 0 Primary Sensor Coefficient

Scalar (0,1] to multiply selected sensor
value before using.
Note this will reduce resolution of the
closed-loop.

PID 1 Aux Feedback Sensor Select the sensor to use for Aux PID[1].
PID 1 Aux Sensor Coefficient

Scalar (0,1] to multiply selected sensor
value before using.
Note that this will reduce the resolution of
the closed-loop.

PID 1 Polarity

False: motor output = PID[0] + PID[1],
follower = PID[0] - PID[1].
True : motor output = PID[0] - PID[1],
follower = PID[0] + PID[1].
This only occurs if follower is an auxiliary
type.

Closed Loop Ramp

How much ramping to apply in seconds
from neutral-to-full.
A value of 0.100 means 100ms from neutral
to full output.
Set to 0 to disable.
Max value is 10 seconds.

186 Chapter 2. Follow these instructions in order!

Phoenix

Closed-Loop configs per slot (four slots available)

Name Description
kF Feed Fwd gain for Closed loop. See documentation for calculation details. If using

velocity, motion magic, or motion profile, use (1023 * duty-cycle / sensor-velocity-
sensor-units-per-100ms)

kP Proportional gain for closed loop. This is multiplied by closed loop error in sensor
units. Note the closed loop output interprets a final value of 1023 as full output.
So use a gain of ‘0.25’ to get full output if err is 4096u (Mag Encoder 1 rotation)

kI Integral gain for closed loop. This is multiplied by closed loop error in sensor units
every PID Loop. Note the closed loop output interprets a final value of 1023 as full
output. So use a gain of ‘0.00025’ to get full output if err is 4096u (Mag Encoder
1 rotation) after 1000 loops

kD Derivative gain for closed loop. This is multiplied by derivative error (sensor units
per PID loop). Note the closed loop output interprets a final value of 1023 as full
output. So use a gain of ‘250’ to get full output if derr is 4096u per (Mag Encoder
1 rotation) per 1000 loops (typ 1 sec)

Loop
Pe-
riod
Ms

Number of milliseconds per PID loop. Typically, this is 1ms.

Al-
low-
able
Error

If the closed loop error is within this threshold, the motor output will be neutral.
Set to 0 to disable. Value is in sensor units.

I
Zone

Integral Zone can be used to auto clear the integral accumulator if the sensor pos
is too far from the target. This prevent unstable oscillation if the kI is too large.
Value is in sensor units.

Max
Inte-
gral
Ac-
cum

Cap on the integral accumulator in sensor units. Note accumulator is multiplied
by kI AFTER this cap takes effect.

Peak
Out-
put

Absolute max motor output during closed-loop control modes only. A value of ‘1’
represents full output in both directions.

Motion Magic Closed-Loop Configs

Name Description
Accelera-
tion

Motion Magic target acceleration in (sensor units per 100ms) per second.

Cruise Ve-
locity

Motion Magic maximum target velocity in sensor units per 100ms.

S-Curve
Strength

Zero to use trapezoidal motion during motion magic. [1,8] for S-Curve,
higher value for greater smoothing.

2.25. Motor Controller Closed Loop 187

Phoenix

Motion Profile Configs

Name Description
Base Trajectory Period

Base value (ms) ADDED to every buffered
trajectory point.
Note that each trajectory point has an
individual duration (0-127ms).
This can be used to uniformly delay every
point.

Trajectory Interpolation Enable

Set to true so Motion Profile Executor to
linearize the target
position and velocity every 1ms. Set to
false to match 2018 season
behavior (no linearization). This feature
allows sending less
points over time and still having resolute
control
Default is set to true.

2.26 Faults

“Faults” are status indicators on CTRE CAN Devices that indicate a certain behavior or event
has occurred. Faults do not directly affect the behavior of a device, rather they indicate the
device’s current status and highlight potential issues.
Faults are stored in two fashions. There are “live” faults that are reported in real-time, and
“sticky” faults which assert persistently and stay asserted until they are manually cleared
(like trouble codes in a vehicle).

Note: Sticky Faults can be cleared in Tuner and via API.

Note: Faults and Sticky Faults can be polled using Tuner-Self-test Snapshot or via API.

Tip: Motor Controllers have a sticky fault to detect if device reset during robot-enable. This
is useful for detecting breaker events.

188 Chapter 2. Follow these instructions in order!

Phoenix

2.26.1 Polling Faults in the API

LabVIEW

The GET STATUS VI can be used to retrieve sticky flags, and clear them.

C++/Java

The APIs getFaults() and getStickyFaults() can be used to check the latest received faults.
clearStickyFaults() can be used to clear all sticky fault flags.

2.26.2 PCM Faults

Below is the list of common PCM Faults and Resolutions.

2.26. Faults 189

Phoenix

2.27 Common Device API

2.27.1 Typical Device Utilization

Configuration CAN
2.0

CAN FD
(CANivore on Phoenix v5.21.1)

Talon FX 4.6% 2.0%
Pigeon 2.0 5.5% 2.5%
CANdle 2.2% 1.0%
CANcoder 1.8% 0.9%
Swerve Drive
(8x Talon FX, 4x CANcoder, 1x Pigeon 2.0)

49.7% 22.2%

190 Chapter 2. Follow these instructions in order!

Phoenix

Note: Phoenix’s Diagnostic server can add anywhere from 0 to 5% CAN bus utilization.

Note: These values are base bus utilizations without changing any status frame periods.

Tip: Users should keep the bus utilization below 90% for proper functionality.

Note: CANdle’s device utilization is without LED usage. Animating or setting LEDs will
increase bus utilization.

2.27.2 Setting Status Frame Periods

All Phoenix devices have a setStatusFramePeriod() routine/VI that allows for tweaking the
frame periods of each status group. The status group contents and default updates rates are
listed below.

Status Groups

Motor Controllers

Status 1 (Default Period 10ms):
• Applied Motor Output
• Fault Information
• Limit Switch Information

Tip: Motor controllers that are followers can have slower update rates for this group without
impacting performance.

Status 2 (Default Period 20ms):
• Selected Sensor Position (PID 0)
• Selected Sensor Velocity (PID 0)
• Brushed Supply Current Measurement
• Sticky Fault Information

Tip: Motor controllers that are followers can have slower update rates for this group without
impacting performance.

Status 3 (Default Period >100ms):
• Quadrature Information

2.27. Common Device API 191

Phoenix

Status 4 (Default Period >100ms):
• Analog Input
• Supply Battery Voltage
• Controller Temperature

Status 8 (Default Period >100ms):
• Pulse Width Information

Status 10 (Default Period >100ms):
• Motion Profiling/Motion Magic Information

Status 12 (Default Period >100ms):
• Selected Sensor Position (Aux PID 1)
• Selected Sensor Velocity (Aux PID 1)

Status 13 (Default Period >100ms):
• PID0 (Primary PID) Information

Status 14 (Default Period >100ms):
• PID1 (Auxiliary PID) Information

Status 21 (Default Period >100ms):
• Integrated Sensor Position (Talon FX)
• Integrated Sensor Velocity (Talon FX)

Status Brushless Current (Default Period 50ms):
• Brushless Supply Current Measurement
• Brushless Stator Current Measurement

Pigeon IMU

General Status 1 (Default Period >100ms):
• Calibration Status
• IMU Temperature

Conditioned Status 9 (Default Period 10ms):
• Six degree fused Yaw, Pitch, Roll

Conditioned Status 6 (Default Period 10ms):
• Nine degree fused Yaw, Pitch, Roll (requires magnetometer calibration).

Conditioned Status 11 (Default Period 20ms):
• Accumulated Gyro Angles

Conditioned Status 3 (Default Period >100ms):
• Accelerometer derived angles

Conditioned Status 10 (Default Period >100ms):
• Six degree fused Quaternion

192 Chapter 2. Follow these instructions in order!

Phoenix

Raw Magnetometer Status 4 (Default Period 20ms):
• Unprocessed magnetometer values (x,y,z)

Biased Status 2 Gyro (Default Period >100ms):
• Biased gyro values (x,y,z)

Biased Status 6 Accelerometer (Default Period >100ms):
• Biased accelerometer values (x,y,z)

CANifier

General Status 1 (Default Period >100ms):
• Applied LED Duty Cycles

Conditioned Status 2 (Default Period 10ms):
• Quadrature Information
• General Inputs

Conditioned Status 3 (Default Period >100ms):
• PWM input 0 Information

Conditioned Status 4 (Default Period >100ms):
• PWM input 1 Information

Conditioned Status 5 (Default Period >100ms):
• PWM input 2 Information

Conditioned Status 6 (Default Period >100ms):
• PWM input 3 Information

CANCoder

General Status 1 (Default Period 10ms):
• Position
• Velocity
• Absolute Position

CAN bus Utilization/Error metrics

The driver station provides various CAN bus metrics under the lightning bolt tab.
Utilization is the percent of bus time that is in use relative to the total bandwidth available of
the 1Mbps Dual Wire CAN bus. So at 100% there is no idle bus time (no time between frames
on the CAN bus).
Demonstrated here is 70% bus use when controlling 16 Talon SRXs, along with 1 Pneu-
matics Control Module (PCM) and the Power Distribution Panel (PDP).

2.27. Common Device API 193

Phoenix

The “Bus Off” counter increments every time the CAN Controller in the roboRIO enters
“bus-off”, a state where the controller “backs off” transmitting until the CAN bus is deemed
“healthy” again.
A good method for watching it increment is to short/release the CAN bus High and Low lines
together to watch it enter and leave “Bus Off” (counter increments per short). The “TX Full”
counter tracks how often the buffer holding outgoing CAN frames (RIO to CAN device) drops a
transmit request. This is another common symptom when the roboRIO no longer is connected
to the CAN bus.
The “Receive” and “Transmit” signal is shorthand for “Receive Error Counter” and “Transmit
Error Counter”.
These signals are straight from the CAN bus, and track the error instances occurred “on the
wire” during reception and transmission respectively. These counts should always be zero.
Attempt to short the CAN bus and you can confirm that the error counts rise sharply, then
decrement back down to zero when the bus is restored (remove short, reconnect daisy chain).
When starting out with the FRC control system and Talon SRXs, it is recommended to watch
how these CAN metrics change when CAN bus is disconnected from the roboRIO and other
CAN devices to learn what to expect when there is a harness or a termination resistor issue.
Determining hardware related vs software related issues is key to being successful when
using many CAN devices.

Followers

Motor controllers that are followers can set Status 1 and Status 2 to 255ms(max) using set-
StatusFramePeriod.
The Follower relies on the master status frame allowing its status frame to be slowed without
affecting performance.
This is a useful optimization to manage CAN bus utilization.

2.27.3 Detecting device resets

All Phoenix devices have a hasResetOccurred()/VI routine that will return true if device reset
has been detected since previous call.
Detecting this is useful for two reasons:
• Reapply any custom status frame periods that were set using setStatusFramePeriod().
• Telemetry / general troubleshooting (in addition to sticky fault, see tip below).

194 Chapter 2. Follow these instructions in order!

Phoenix

Tip: Motor Controllers have a sticky fault to detect if device reset during robot-enable. This
is useful for detecting breaker events.

2.28 Support

2.28.1 GitHub Examples

All documentation and examples can be found in the public organization… https://github.com/
CrossTheRoadElec
There many examples in all three FRC languages available at… https://github.com/
CrossTheRoadElec/Phoenix-Examples-Languages https://github.com/CrossTheRoadElec/
Phoenix-Examples-LabVIEW

2.28.2 Contact information

CTR Staff can be reached out with the contact information available at…
https://store.ctr-electronics.com/contact-us/
The best method for contacting support is via our email (support@ctr-electronics.com). This
allows for simple sharing of screenshots and supplemental file attachments.
If seeking help troubleshooting hardware issues, please answer the questions under “War-
ranty” inside the “Support Request form”.
To resolve your issue in an expedient fashion, we need the following:
• What behavior are you seeing versus what are you expecting to observe?
• What procedure are you following to reproduce the issue?
• If using the roboRIO, we need a screenshot of the Phoenix Tuner to confirm firmware
version, gain values, etc.

• If using the roboRIO, we need a screenshot of a Self-test Snapshot taken during the
undesired behavior.

• Part numbers of all devices involved. For example, if using a sensor, what is the sensor
part number?

• Firmware versions of all devices involved.
• If using motor controllers, are they on CAN bus or PWM?
• If using Phoenix, screenshot of the About form in Phoenix Tuner / Phoenix LifeBoat.

2.28. Support 195

https://github.com/CrossTheRoadElec
https://github.com/CrossTheRoadElec
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW
https://store.ctr-electronics.com/contact-us/
mailto:support@ctr-electronics.com

Phoenix

2.29 Troubleshooting and Frequently Asked Questions

2.29.1 Driver Station Messages

What do I do when I see errors in Driver Station?

DS Errors should be addressed as soon as they appear. This is because:
• Phoenix API will report if a device is missing, not functioning, has too-old firmware, etc.
• If errors are numerous and typical, then users cannot determine if there is a new problem
to address.

• A large stream of errors can bog down the DriverStation/roboRIO. Phoenix Framework
has a debouncing strategy to ensure this does not happen, but not all libraries do this.

Phoenix DS errors occur on call. Meaning VIs/API functions must be called in robot code for
any errors to occur. When an error does occur, a stack trace will report where in the robot
code to look.
The Debouncing Strategy that Phoenix uses is 3 seconds long. Phoenix keys a new error on
device ID & function. This is to ensure that all unique errors are logged while making sure
the DriverStation/roboRIO does not generate excessive errors.

Driver Station says the firmware is too old.

Use Phoenix Tuner to update the firmware of the device.
Note that the robot application must be restarted for the firmware version check to clear.
This can be done by redeploying the robot application or simply restarting the robot.

Driver Station says the firmware could not be retrieved and to check the firmware
and ID.

196 Chapter 2. Follow these instructions in order!

Phoenix

This usually indicates that your device ID is wrong in your robot software, or your firmware
is very old.
Use Phoenix Tuner to check your device IDs and make sure your firmware is up-to-date.

Driver Station Says “ERROR 7 Call Library Function Node…”

This can be seen when the Phoenix libraries are not present on the roboRIO.
This can be fixed by following the process to prepare the roboRIO for LabVIEW.

Driver Station Says Variant To Data in …

This is usually caused by a diagram disable structure around a MotorController or Enhanced-
MotorController VI

In order to fix this, you must wire the device reference through the enabled state of the
diagram disabled block

2.29. Troubleshooting and Frequently Asked Questions 197

Phoenix

2.29.2 PCM

My compressor turns on and I have air pressure, but why isn’t my solenoid turning
on?

Check the red LED for the Solenoid channel. If the LED turns on as expected, make sure the
Solenoid Voltage Jumper is set to the proper voltage (12 or 24 volts).

198 Chapter 2. Follow these instructions in order!

Phoenix

Warning: If you attempt to drive 12V Solenoids with 24V, you will damage the solenoids.
If you attempt to drive 24V Solenoids with 12V, you may damage the solenoids.

Why isn’t the Compressor turning on? Why does the PCM COMP LED not turn on?

In order for the compressor output to activate, certain conditions have to be met.
• The robot must be enabled.
• Robot software must have a pneumatics related object (compressor or solenoid).
• PCM must be powered/wired to CAN bus.
• PCM’s device ID must match robot software.

If any of these conditions are not met, the compressor will not activate. The best method for
root-causing wiring or software issues is to check the following conditions and symptoms in
sequential order.

PCM must be powered.

This can be checked by ensuring the STATUS LED is illuminated. If the STATUS LED is off,
recheck the power path from the PDP to the PCM. If using the fused output of the PDP, check
the fuse. This can be done by removing the fuse and checking its continuity/DC-resistance, or
simply by measuring the voltage across the power/ground wires that connect into the PCM’s
Vin Weidmuller input (should be approximately battery voltage or ~12V).

2.29. Troubleshooting and Frequently Asked Questions 199

Phoenix

PCM must be on CAN Bus

The PCM must be connected to the CAN bus chain. If a PCM does not see a healthy CAN bus
it will blink the STATUS LED red (See User’s Guide for LED States).
Additionally the PCM will not appear in Phoenix Tuner or will report loss of communication.
This is important to check because a red STATUS LED pattern may also reflect a fault con-
dition (if robot is enabled). To distinguish a fault condition, confirm the PCM does appear
in the configuration page, and use the Self-test Snapshot to identify which fault condition is
occurring.
If these negative symptoms are noticed, recheck CAN bus harness and termination resistors.
If several CAN devices are also blinking red then check the CANH/CANL chain. If it’s just the
PCM then inspect the Weidmuller CAN contacts on the PCM.
If the PCM CAN connection is healthy, then it should slowly blink green (when robot is dis-
abled). It may blink orange instead to signal that a sticky fault has been logged. Use the
Self-test Snapshot in Phoenix Tuner to inspect and clear sticky faults.
More information on faults and sticky faults is available under PCM Faults.

Confirm PCM is not faulting.

At this point the PCM should appear in the Phoenix Tuner CAN Devices tab. Using the Self-
test Snapshot, determine if any faults are occurring “Now”. Checking the sticky faults can
also be helpful for identifying recent faults.

More information on faults and sticky faults is available under PCM Faults.

200 Chapter 2. Follow these instructions in order!

Phoenix

The Robot must be enabled, Robot Software must create a pneumatics related ob-
ject.

The PCM should appear in the Phoenix Tuner CAN Devices tab, however when enabling the
robot, the STATUS LED may not transition to strobe green. Additionally, when performing
the Self-test Snapshot, the report may read “PCM IS NOT ENABLED”

This is typical if the robot is not enabled OR if the robot application did not create any Solenoid
or Compressor objects. This is how the programming API signals the intent of using pneu-
matics, and thus enabling the PCM.
Make sure the robot is truly enabled by looking at the Driver Station.
Instructions for creating a Solenoid, DoubleSolenoid or Compressor object in LabVIEW, C++,
and Java can be found at https://docs.wpilib.org, (search for keyword “PCM”). Creating a
single object of any pneumatics related type is sufficient for enabling the PCM (and therefore
enabling compressor closed-loop).

Note: In order to create a software object for Solenoid or Compressor, typically the caller
may specify the CAN Device ID (not specifying it typically defaults to selecting Device ID
zero). This value must match what is specified in Phoenix Tuner. For more information see
Set Device IDs.

Tip: Since PCMs default with a device ID of zero, users only using one PCM may prefer to
leave the default device ID. PCM Device ID range is allowed to overlap with the device ID of
other non-PCM CAN devices.

Pressure Switch must be wired and must signal “not full”.

Even though a robot and PCM are enabled, the compressor output will not activate if the
pressure switch is not connected or is indicating full pressure. The only way to inspect this
reliably is to perform the Self-test Snapshot in Phoenix Tuner.

If Self-test Snapshot is reading “pressure is full” when the pressure gauge clearly is not full,
recheck the wiring on the pressure switch and PCM.

2.29. Troubleshooting and Frequently Asked Questions 201

https://docs.wpilib.org

Phoenix

The COMP LED must illuminate green.

If the COMP LED is off then the PCM is not activating the compressor output. The Self-test
Snapshot is the best method for determining why. If the PCM is not present in the Phoenix
Tuner recheck section the first 2 steps of this process. If the PCM is present and not enabled,
recheck the robot program. If the Compressor is not “close-looped on sensor”, then the robot
application must be using programming API to disable it. If pressure is erroneously reading
“full”, recheck the previous step.

Compressor must be wired and functional.

If the COMP LED is illuminated green but the compressor still is not activating, then there
may be a wiring issue between the PCM and the compressor. A voltmeter can be used to
confirm that the PCM is applying 12V across the high and low side compressor output, and
that 12V is reaching the compressor.

2.30 Errata

2.30.1 CANCoder vH configs don’t show up in Tuner

CANCoder vH configs do not show up on the Config Tab in Phoenix Tuner with API versions
5.21.2 and older.
This does not affect the original CANCoder. For information on how to tell what hardware
version a CANCoder is, see the Bring Up: CANCoder - Versions section.

Tip: This is fixed in API version 5.21.3

2.30.2 PigeonIMU Set Fused Heading accepts 1/64th of a degree

The input to setFusedHeading in PigeonIMU uses 64 units per degree instead of degrees.
To work around this, do one of the following:

• Use setYaw instead of setFusedHeading and getYaw instead of getFusedHeading.
• Multiply the desired heading (in degrees) by 64 before calling setFusedHeading.

2.30.3 “Neutral Brake Curr Limit” is often set

Sometimes TalonFX will fault “Neutral Break Curr Limit” on bootup.
“Neutral Break Curr Limit” means the TalonFX stator-current-limited while it was neutral-
braking. This does not represent a failure condition as stator-limiting during neutral-brake
is an intended feature of the product. Similar sticky faults exist for supply and stator current
limits during motor output.
However, sometimes the TalonFX will trip “Neutral Break Curr Limit” when the Talon FX
beeps during the boot up procedure.

202 Chapter 2. Follow these instructions in order!

Phoenix

Workaround: This sticky fault is harmless and does not impact functionality. However, if
monitoring this flag is required, user application can clear sticky faults after boot-up, then
monitor them during operation. Alternatively, user application can monitor the live fault flag
during operation.

2.30.4 “Persis Storage Failure” is often set

Sometimes TalonFX will fault “Persis Storage Failure”.
“Persis Storage Failure” means there is a hardware issue with the persistent memory storage
in the Talon FX.
However, “Persis Storage Failure” may be reported intermittently by the prom driver in the
Talon FX. This can occur due to a known hardware-limitation (errata) with themicrocontroller.
The Talon firmware already corrects for this hardware-limitation, but the sticky fault may still
be reported for diagnostic purposes. This may change in a future release of firmware.
Workaround: There is no need to work around this issue. Sticky fault can be ignored.

2.30.5 Motion Magic Target does not approach the API requested Tar-
get

Under very specific circumstances, the motion magic target position may not approach the
final target position requested using Phoenix API. The requirements are:
• Motor Controller firmware is <= 22.0
• Motion Magic S-Curve is set to a non-zero value.
• Must be in Motion Magic Control Mode
• Robot application frequently calls the set() method with new values.
• Set point changes exceed 16 bits

Workaround: Any of the following will prevent the issue from occurring:
• Turn off S-Curve OR
• Update firmware to 22.1 OR
• Ensure set point changes are within 16 bits.

Tip: This is fixed in all motor controller versions 22.1

2.30.6 CANivore: Loss of communication under specific circumstances

Under a specific set of circumstances, CANivore will lose communications for 16 seconds and
appear frozen (solid LEDs). The requirements are:
• CANivore must be using firmware 22.1.0.1.
• CANivore must be initially connected to USB (Status LED orange or green).
• After initial connection, CANivore must lose connection to only USB D+/D-while main-
taining connection to USB 5V and Ground (Status LED fast-red strobe).

2.30. Errata 203

Phoenix

• After loss of D+/D-, CANivore must regain connection to D+/D- while maintaining con-
nection to USB 5V and Ground.

These circumstances do not reproduce the issue in every instance.

The issue was discovered by CTRE staff during routine quality checks.
No customers have reported this failure symptom to date.

Tip: This is fixed in CANivore firmware version 22.2.0.0

2.30.7 LabVIEW Phoenix Open VIs must be chained to guarantee se-
quential execution

When opening Phoenix objects in LabVIEW, the Open VIs must be chained together so that
they execute sequentially. See an example of chaining two Open VIs:

If the Open VIs are not chained together, this can result in:
• Multiple Diagnostic Servers
• Multiple enable signals (enable and disable will conflict, motor controllers will appear
to not enable)

• Occasional program crash on deploy

204 Chapter 2. Follow these instructions in order!

Phoenix

Tip: This is fixed in Phoenix version 5.21.1

2.30.8 Talon FX Remote Filter Device ID Must be 15 or Less

When configuring Talon FX to have a remote sensor, the filter’s device ID must be 15 or less.
Attempting to set a Remote Filter Device ID >15 in Phoenix Tuner will result in a
“DI_Mismatch” error.
When running a robot program, the filter device ID will not be the expected value and so will
generate an error that the remote sensor is missing on the bus. The associated fault will also
be asserted and can be viewed in self-test snapshot of the Talon FX.
The actual filter device ID set will be truncated to the original set value modulo 15.

Tip: This is fixed in firmware version 21.0.1.0

2.30.9 Java Simulation: WPI_TalonSRX/WPI_VictorSPX Null Pointer Ex-
ception

When running simulation, the following error can occur:

Error at com.ctre.phoenix.motorcontrol.can.WPI_TalonSRX$OnPeriodicCallback.run(WPI_
↪→TalonSRX.java:208): Unhandled exception: java.lang.NullPointerException

at com.ctre.phoenix.motorcontrol.can.WPI_TalonSRX$OnPeriodicCallback.run(WPI_
↪→TalonSRX.java:208)

at edu.wpi.first.hal.HAL.simPeriodicBefore(HAL.java:41)
at edu.wpi.first.wpilibj.IterativeRobotBase.loopFunc(IterativeRobotBase.

↪→java:281)
at edu.wpi.first.wpilibj.TimedRobot.startCompetition(TimedRobot.java:117)
at edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:335)
at edu.wpi.first.wpilibj.RobotBase.lambda$startRobot$0(RobotBase.java:387)
at java.base/java.lang.Thread.run(Thread.java:834)

This occurs when multiple WPI_TalonSRX objects have been created with the same device
ID or multiple WPI_VictorSPX objects have been created with the same device ID. Find and
remove the extra objects from your java code.

2.30.10 HERO firmware compatibility with firmware 4.X

The HERO robot controller still requires v11.X firmware in the motor controllers to function
correctly. This will addressed in a future release (which updates HERO).
The HERO robot controller also still requires v0.41 firmware for Pigeon IMU. This will ad-
dressed in a future release (which updates HERO).

2.30. Errata 205

Phoenix

2.30.11 No S-Curve VI in LabVIEW

Pass ‘412’ as the parameter, and the desired S-Curve strength [0,8] as the value.
A value of 0 represents no S-Curving (trapezoidal profiling).
To set the S-Curve strength in LabVIEW, the following LV snippet can be used.

Tip: Drag and drop the bottom image into your LabVIEW Block Diagram.

2.30.12 Stator Current Limit Threshold Configs

The trigger threshold current and time are not honored in 20.0.0 firmware. Stator current
limit will trigger when the measured current exceeds the limit (within 1ms).

2.30.13 CANCoder not a remote sensor source

CANCoder is not available as a remote sensor source for Talon FX/SRX and Victor SPX. This
will be addressed in a future update.

Tip: This was added in Phoenix v5.17.6. Motor Controller must be updated to 20.1 or newer.

2.30.14 Remote Sensors Not Working with Talon FX

The remote sensor feature does not work with Talon FX.

Tip: This is fixed in firmware version 20.1

206 Chapter 2. Follow these instructions in order!

Phoenix

2.30.15 Kickoff Temporary Diagnostic Server may not work

The kickoff version of Tuner and temporary diagnostic server has a known issue where CAN
bus devices may not show up. This has been fixed in version 1.6.0.0 of Tuner. This can
be quickly checked by looking at the robot controller install tab of Tuner. If there is no purple
“Restart LabVIEW Robot Code” button, Tuner is not up to date and may have this issue. Your
version of Tuner should look like the following:

2.30.16 LabVIEW 2020 Deploys failing

During our system level validation, we observed a circumstance where LabVIEW permanent
deploys would fail (“Connection disconnected by peer”). We are currently investigating this,
but we will tentatively report the following suggestions until we complete our assessment.
• When deploying LabVIEW, we recommend disconnecting Phoenix Tuner to ensure it
doesn’t influence LabVIEW’s deploy process.

• If deploys are consistently failing, the running LabVIEW application can be cleared via
SSH with /usr/local/frc/bin/frcKillRobot.sh -t -r or press the UnDeploy Lab-
VIEW/Diag Server button in Tuner - Robot Controller Install. This should bring the ro-
boRIO into an empty state whereby deploy can be re-attempted.

• Alternatively roboRIO could also be reset using DriverStation “Reboot roboRIO” button.
This is effective if roboRIO is running a temporary deployed LV application or temporary
diagnostic server.

Tip: This has been resolved in Phoenix v5.17.4.

2.30. Errata 207

Phoenix

2.30.17 LabVIEW 2020 Shared-Object Deployment Limitations

When a user hard-deploys an application while a soft-deployed-session is running, Lab-
VIEW will sometimes cause deployed shared objects to become inoperable. If this occurs in
a project with Phoenix, the project will fail on the deploy step, citing the network connection
was closed by the peer, and the robot application will be unable to use Phoenix.
To work around this, press finish on the front panel of Robot Main before you hard deploy
your application.

2.30.18 TalonFX Current Reporting Status Frame Not Available

The Status Frame that TalonFX uses when reporting its supply and stator current is not avail-
able under the StatusFrame or StatusFrameEnhanced enum. The enum will be modified to
include this frame in a future update. Currently, the following can be done to modify the
Current Measurement Status Frame period:

_fx.setStatusFramePeriod(0x1240, periodMs); //0x1240 is used to identify the Current␣
↪→Status Frame

Tip: This has been resolved in Phoenix v5.17.6.

2.30.19 Talon FX Thermal Limits Low when using PWM Out-of-the-Box

Talon FX’s ship firmware has lower thermal limits that current firmware. If using the Talon
FX with PWM control, users may still want to update firmware over CAN to take advantage
of the higher thermal limits.

2.30.20 Talon FX does not support Sensor Coefficient

Configuring a sensor coefficient on Talon FX does not do anything.

Tip: This has been resolved in firmware version 20.2.3.0

2.30.21 Talon FX Continuous-Deadbands all the time

Talon FX will always follow a continuous deadband regardless of the mode it’s in. This results
in double-deadbanding for a follower, which is seen by the applied output of the follower
being slightly different than the master. Read more about Continuous Deadbanding inside
Bring Up: Talon FX/SRX and Victor SPX.

Tip: This has been resolved in firmware version 20.1.0.0

208 Chapter 2. Follow these instructions in order!

Phoenix

2.31 Software Release Notes

For the latest release notes, see the full Release Notes.
For the latest firmware versions, see our Release Repository.

2.32 Additional Resources

2.32.1 Phoenix GitHub Examples

All documentation and examples can be found in the public organization: https://github.com/
CrossTheRoadElec
There many examples in all three FRC languages available at:
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW

2.32.2 Phoenix C++/Java API Documentation

https://api.ctr-electronics.com/phoenix/release/java/
https://api.ctr-electronics.com/phoenix/release/cpp/

2.32.3 FRC WPILib Docs

Core documentation for the base FRC control system. https://docs.wpilib.org

2.32.4 Power Distribution Panel (PDP)

https://docs.wpilib.org/en/latest/docs/software/can-devices/power-distribution-panel.html
https://docs.wpilib.org/en/latest/docs/software/can-devices/using-can-devices.html

2.32.5 Pneumatics Control Module (PCM)

https://docs.wpilib.org/en/latest/docs/software/can-devices/pneumatics-control-module.html
https://docs.wpilib.org/en/latest/docs/hardware/hardware-basics/wiring-pneumatics.html

2.31. Software Release Notes 209

https://store.ctr-electronics.com/content/release-notes/RELEASE_NOTES.txt
https://github.com/CrossTheRoadElec/Phoenix-Releases
https://github.com/CrossTheRoadElec
https://github.com/CrossTheRoadElec
https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages
https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW
https://api.ctr-electronics.com/phoenix/release/java/
https://api.ctr-electronics.com/phoenix/release/cpp/
https://docs.wpilib.org
https://docs.wpilib.org/en/latest/docs/software/can-devices/power-distribution-panel.html
https://docs.wpilib.org/en/latest/docs/software/can-devices/using-can-devices.html
https://docs.wpilib.org/en/latest/docs/software/can-devices/pneumatics-control-module.html
https://docs.wpilib.org/en/latest/docs/hardware/hardware-basics/wiring-pneumatics.html

	Blog Entries
	Follow these instructions in order!
	Phoenix Software Reference Manual
	Primer: CTRE CAN Devices
	Primer: What is Phoenix v5 Software
	What is Phoenix Tuner?

	Do I need to install any of this?
	Prepare your workstation computer
	Before Installing Phoenix…
	Test base FRC Installation - FRC LabVIEW
	Test base FRC Installation - FRC C++ / Java
	General Recommendations for FRC C++ / Java.

	What to Download (and why)
	Option 1: Windows installer (strongly recommended)
	Option 2: Phoenix API via Non-Windows Zip
	Phoenix Tuner
	Device Firmware Files (crf)

	Workstation Installation
	Option 1: Windows Offline Installer (C++/Java/LabVIEW, HERO C#)
	Option 2: Non-Windows Zip (C++/Java)

	Post Installation Steps
	FRC C++/Java - Verify Installation
	FRC LabVIEW – Verify Installation
	FRC Windows – Open Phoenix Tuner

	FRC: VS Code C++/Java
	FRC C++/Java – Create a Project
	FRC C++/Java – Add Phoenix
	FRC C++ Build Test: Single Talon
	FRC Java Build Test: Single Talon
	FRC C++/Java - Updating Phoenix
	FRC C++/Java – Test Deploy

	FRC: Prepare NI roboRIO
	Why prepare Robot Controller?
	LabVIEW

	How to prepare Robot Controller
	Verify the robot controller - Tuner
	roboRIO Connection (Wi-Fi/Ethernet)

	Verify the robot controller - LabVIEW
	Verify the robot controller - Web page
	Verify the robot controller - HTTP API

	Prepare Linux Robot Controller
	Why prepare Linux Robot Controller?
	Supported Linux Controllers
	How to prepare Hardware?
	Jetson TX2
	Raspberry Pi/Jetson Nano
	CANable (SocketCAN Device)

	How to prepare Robot Controller Software?
	Configure SocketCAN to allow hot swapping

	How to validate SocketCAN functionality?
	Running the SocketCan Example
	Modifying the SocketCan Example
	How to setup Phoenix Tuner?
	Setting up the Phoenix Diagnostics Server

	Verify the robot controller - Tuner

	Initial Hardware Testing
	Bring Up: CAN Bus
	Understand the goal
	Check your wiring
	Power up and check LEDs
	Open Phoenix Tuner
	LEDs are red – now what?
	Approach 1 (best)
	Approach 2 (easier)

	Set Device IDs
	Field upgrade devices
	Pick device names (optional)
	Self-test Snapshot
	Driver Station Versions Page

	Bring Up: CANivore
	Supported systems
	Non-FRC Linux Kernel Module
	View attached CANivores
	Field upgrade CANivores
	Rename CANivores
	Configure CAN bus termination
	Configure ESP32
	CANivore API
	CANivore Status Prints
	caniv - CANivore CLI

	Bring Up: PCM
	Phoenix Tuner Self-test Snapshot

	Bring Up: PDP
	Getting sensor data
	DriverStation Logs
	2015 Kick off Kit PDPs

	Bring Up: Pigeon IMU
	Power Boot
	Phoenix Tuner
	Pigeon API
	Temperature Calibration
	Temperature Calibration procedure

	Bring Up: Pigeon 2.0
	Power Boot
	Phoenix Tuner
	Pigeon API

	Bring Up: CANifier
	Phoenix Tuner
	LED Strip Control
	CANifier API

	Bring Up: CANCoder
	Magnet Placement
	Phoenix Tuner
	Choose Sensor Direction
	Choose Sensor Boot-Initialization Strategy
	Choose Absolute Sensor Range
	Choose Absolute Sensor Offset
	CANCoder API
	CANCoder Versions
	Identification
	Firmware Upgrade

	Bring Up: CANdle
	CANdle API
	Examples

	Bring Up: Talon FX/SRX and Victor SPX
	Factory Default Motor Controller
	Configuration
	Method 1 – Use the configAll API
	Method 2 – Factory Default and config* routines
	Method 3 – Use Tuner
	Control Signals

	Test Drive with Tuner
	Setting up non-FRC Control
	Confirm FRC Unlock
	Control tab
	Plot tab

	Test Drive with Robot Controller
	Java: Sample driving code

	Open-Loop Features
	Inverts
	Talon FX Specific Inverts

	Follower
	Controlling Followers with Phoenix Tuner

	Neutral Mode
	Neutral Deadband
	Ramping
	Peak/Nominal Outputs
	Voltage Compensation
	Current Limit
	Legacy API
	New API in 2020

	Reading status signals
	Limit Switches
	Limit Switch Override Enable
	Limit Switch As Digital Inputs
	Remote Limit Switches

	Soft Limits

	Bring Up: Talon FX/SRX Sensors
	Sensor Options
	Talon FX Integrated Sensor
	CANCoder
	Talon SRX External Ribbon Cabled Sensors
	Quadrature
	Analog (Potentiometer or Encoder)
	Pulse Width Decoder
	Cross The Road Electronics Magnetic Encoder (Absolute and Relative)

	Software-Select Sensor
	Sensor Check – With Motor Drive
	Sensor Phase
	Measure Sensor Phase
	Adjust Sensor Phase
	Confirm Sensor Phase using API
	What if the sensor Phase is already correct?

	Confirm Sensor Resolution/Velocity
	Sensor Resolution

	Setting Sensor Position
	Auto Clear Position using Index Pin Or Limit Switches

	Velocity Measurement Filter
	Changing Velocity Measurement Parameters.
	Recommended Procedure

	Next Steps

	Bring Up: Remote Sensors
	Bring up the sensor on the remote CTRE CAN device
	Filter configuration
	Sensor Check - No Motor Drive
	Sensor Check - With Motor Drive
	Remote Features Check
	Next Steps

	Bring Up: Differential Sensors
	Bring up Sensors as Remote/Local sensors
	Configure sensors as Sum/Diff terms
	Auxiliary PID Polarity
	Using the differential sensor setup

	WPI/NI Software Integration
	C++ / Java Drive Train classes
	C++ / Java Motor Safety Feature

	Simulation
	Supported Devices
	Simulation API
	Simulating Sensors
	“Raw” Quadrature/Integrated Sensor Position

	Motor Controller Closed Loop
	Primer on Closed-loop
	Closed-Loop Control Modes
	Position Closed-Loop Control Mode
	Current Closed-Loop Control Mode
	Velocity Closed-Loop Control Mode
	Motion Magic Control Mode
	Motion Profile Control Mode
	Motion Profile Arc Control Mode

	Auxiliary Closed Loop PID[1]
	Example 1 - Differential Drivetrain
	Example 2 - Lift Mechanism

	Sensor Preparation
	Arbitrary Feed Forward
	Do I need to use Arbitrary Feed Forward?
	Setting Arbitrary Feed Forward
	Common Feed Forward Uses/Calculations
	Gravity Offset (Elevator)
	Gravity Offset (Arm)

	Calculating Velocity Feed Forward gain (kF)
	Do I need to calculate kF?
	How to calculate kF

	Motion Magic / Position / Velocity / Current Closed Loop Closed Loop
	Setting Motion Magic Cruise Velocity And Acceleration
	Dialing kP
	Dialing kD
	Dialing kI

	Auxiliary Closed Loop PID[1] Walkthrough
	Motion Profiling Closed Loop
	Create a motion profile
	Upload it to the robot
	Write the points to a Buffered Stream
	Call startMotionProfile
	Check isMotionProfileFinished

	Motion Profiling Arc Closed Loop
	Mechanism is Finished Command
	Closed-Loop Configurations
	General Closed-Loop Configs
	Closed-Loop configs per slot (four slots available)
	Motion Magic Closed-Loop Configs
	Motion Profile Configs

	Faults
	Polling Faults in the API
	LabVIEW
	C++/Java

	PCM Faults

	Common Device API
	Typical Device Utilization
	Setting Status Frame Periods
	Status Groups
	Motor Controllers
	Pigeon IMU
	CANifier
	CANCoder

	CAN bus Utilization/Error metrics
	Followers

	Detecting device resets

	Support
	GitHub Examples
	Contact information

	Troubleshooting and Frequently Asked Questions
	Driver Station Messages
	What do I do when I see errors in Driver Station?
	Driver Station says the firmware is too old.
	Driver Station says the firmware could not be retrieved and to check the firmware and ID.
	Driver Station Says “ERROR 7 Call Library Function Node…”
	Driver Station Says Variant To Data in …

	PCM
	My compressor turns on and I have air pressure, but why isn’t my solenoid turning on?
	Why isn’t the Compressor turning on? Why does the PCM COMP LED not turn on?
	PCM must be powered.
	PCM must be on CAN Bus
	Confirm PCM is not faulting.
	The Robot must be enabled, Robot Software must create a pneumatics related object.
	Pressure Switch must be wired and must signal “not full”.
	The COMP LED must illuminate green.
	Compressor must be wired and functional.

	Errata
	CANCoder vH configs don’t show up in Tuner
	PigeonIMU Set Fused Heading accepts 1/64th of a degree
	“Neutral Brake Curr Limit” is often set
	“Persis Storage Failure” is often set
	Motion Magic Target does not approach the API requested Target
	CANivore: Loss of communication under specific circumstances
	LabVIEW Phoenix Open VIs must be chained to guarantee sequential execution
	Talon FX Remote Filter Device ID Must be 15 or Less
	Java Simulation: WPI_TalonSRX/WPI_VictorSPX Null Pointer Exception
	HERO firmware compatibility with firmware 4.X
	No S-Curve VI in LabVIEW
	Stator Current Limit Threshold Configs
	CANCoder not a remote sensor source
	Remote Sensors Not Working with Talon FX
	Kickoff Temporary Diagnostic Server may not work
	LabVIEW 2020 Deploys failing
	LabVIEW 2020 Shared-Object Deployment Limitations
	TalonFX Current Reporting Status Frame Not Available
	Talon FX Thermal Limits Low when using PWM Out-of-the-Box
	Talon FX does not support Sensor Coefficient
	Talon FX Continuous-Deadbands all the time

	Software Release Notes
	Additional Resources
	Phoenix GitHub Examples
	Phoenix C++/Java API Documentation
	FRC WPILib Docs
	Power Distribution Panel (PDP)
	Pneumatics Control Module (PCM)

